27 resultados para melt spinning
em Cochin University of Science
Resumo:
PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria
Resumo:
The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.
Resumo:
Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.
Resumo:
Poly(ethylene terephthalate) (PET) nanocomposites with single-walled carbon nanotubes (SWNTs) have been prepared by a simple melt compounding method. With increasing concentration (0-3 wt %) of SWNTs, the mechanical and dynamic mechanical properties improved, corresponding to effective reinforcement. Melt rheological characterization indicated the effective entanglements provided by SWNTs in the melt state as well. Thermogravimetric analysis suggested no influence of SWNTs on the thermal stability of PET. Electrical conductivity measurements on the composite films pointed out that the melt compounded SWNTs can result in electrical percolation albeit at concentrations exceeding 2 wt %.
Resumo:
Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.
Resumo:
In this introduction part, importance has been given to the elastomeric properties of polyurethanes. Emphasis has been laid to this property based on microphase separation and how this could be modified by modifying the segment lengths, as well as the structure of the segments. Implication was also made on the mechanical and thermal properties of these copolymers based on various analytical methods usually used for characterization of polymers. A brief overview of the challenges faced by the polyurethane chemistry was also done, pointing to the fact that though polyurethane industry is more than 75 years old, still a lot of questions remain unanswered, that too mostly in the synthesis of polyurethanes. A major challenge in this industry is the utilization of more environmental friendly “Green Chemistry Routes” for the synthesis of polyurethanes which are devoid of any isocyanates or harsh solvents.The research work in this thesis was focused to develop non-isocyanate green chemical process for polyurethanes and also self-organize the resultant novel polymers into nano-materials. The thesis was focused on the following three major aspects:(i) Design and development of novel melt transurethane process for polyurethanes under non-isocyanate and solvent free melt condition. (ii) Solvent induced self-organization of the novel cycloaliphatic polyurethanes prepared by the melt transurethane process into microporous templates and nano-sized polymeric hexagons and spheres. (iii) Novel polyurethane-oligophenylenevinylene random block copolymer nano-materials and their photoluminescence properties. The second chapter of the thesis gives an elaborate discussion on the “Novel Melt Transurethane Process ” for the synthesis of polyurethanes under non-isocyanate and solvent free melt condition. The polycondensation reaction was carried out between equimolar amounts of a di-urethane monomer and a diol in the presence of a catalyst under melt condition to produce polyurethanes followed by the removal of low boiling alcohol from equilibrium. The polymers synthesized through this green chemical route were found to be soluble (devoid of any cross links), thermally stable and free from any isocyanate entities. The polymerization reaction was confirmed by various analytical techniques with specific references to the extent of reaction which is the main watchful point for any successful polymerization reaction. The mechanistic aspects of the reaction were another point of consideration for the novel polymerization route which was successfully dealt with by performing various model reactions. Since this route was successful enough in synthesizing polyurethanes with novel structures, they were employed for the solvent induced self-organization which is an important area of research in the polymer world in the present scenario. Chapter three mesmerizes the reader with multitudes of morphologies depending upon the chemical backbone structure of the polyurethane as well as on the nature and amount of various solvents employed for the self-organization tactics. The rationale towards these morphologies-“Hydrogen Bonding ” have been systematically probed by various techniques. These polyurethanes were then tagged with luminescent 0ligo(phenylene vinylene) units and the effects of these OPV blocks on the morphology of the polyurethanes were analyzed in chapter four. These blocks have resulted in the formation of novel “Blue Luminescent Balls” which could find various applications in optoelectronic devices as well as delivery vehicles.
Resumo:
This thesis discusses the factors which influence the productive and financial performance of the spinning mills in Kerala. The study will also help to assess the effect of ongoing reforms in the industrial sector in India. The main objective of the study is to identify and analyse the factors affecting the efficiency of the spinning mills. The unique feature of the study is that it compares the performance of private sector in relation to its public counterparts and also performance of small sector in relation to medium sector. The study is carried out with reference to the relative performance of differmills in Kerala and to identify the sources of differences in performance. The study covers twenty one spinning mills in Kerala, of which ten are in the private sector, four under NTC, three under co—operat;ive sector and four under KSTC.Measured in terms of firm-size fifteen belong to small size with a spindleage of less than 26,000 and six are in the medium size with a spindleage of 26,000 to 50,0OO.1 The period of study is 1982-83 to 1991-92. Hence, only those companies, of which data of 10 years upto 1991-92 wereavailable, are taken for study.
Resumo:
We have investigated the crystallization characteristics of melt compounded nanocomposites of poly(ethylene terephthalate) (PET) and single walled carbon nanotubes (SWNTs). Differential scanning calorimetry studies showed that SWNTs at weight fractions as low as 0.03 wt% enhance the rate of crystallization in PET, as the cooling nanocomposite melt crystallizes at a temperature 10 °C higher as compared to neat PET. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. WAXD showed oriented crystallization of PET induced by oriented SWNTs in a randomized PET melt, indicating the role of SWNTs as nucleating sites.
Resumo:
Poly(ethylene terephthalate) (PET) based nanocomposites have been prepared with single walled carbon nanotubes (SWNTs) through an ultrasound assisted dissolution-evaporation method. Differential scanning calorimetry studies showed that SWNTs nucleate crystallization in PET at weight fractions as low as 0.3%, as the nanocomposite melt crystallized during cooling at temperature 24 °C higher than neat PET of identical molecular weight. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. Mechanical properties of the PETSWNT nanocomposites improved as compared to neat PET indicating the effective reinforcement provided by nanotubes in the polymer matrix. Electrical conductivity measurements on the nanocomposite films showed that SWNTs at concentrations exceeding 1 wt% in the PET matrix result in electrical percolation. Comparison of crystallization, conductivity and transmission electron microscopy studies revealed that ultrasound assisted dissolution-evaporation method enables more effective dispersion of SWNTs in the PET matrix as compared to the melt compounding method
Resumo:
Poly(propylene) (PP) reinforced with short glass fiber was modified with precipitated nanosilica (pnS) by melt mixing. The weight of the glass fiber was varied by keeping the pnS at optimum level. The properties of the composites were studied using universal testing machine, dynamic mechanic analyser (DMA), differential Scanning calorimetry (DSC) and thermo gravimetric analyser (TGA). The amount of the glass fiber required for a particular modulus could be reduced by the addition of nanosilica.
Resumo:
The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.
Resumo:
The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.
Resumo:
The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.