16 resultados para median sets

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r 2, there exists a connected graph H such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G, J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Following the Majority Strategy in graphs, other consensus strategies, namely Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on graphs are discussed as methods for the computation of median sets of pro¯les. A review of algorithms for median computation on median graphs is discussed and their time complexities are compared. Implementation of the consensus strategies on median computation in arbitrary graphs is discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from f+; g. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

this paper, the median and the antimedian of cographs are discussed. It is shown that if G, and G2 are any two cographs, then there is a cograph that is both Eulerian and Hamiltonian having Gl as its median and G2 as its antimedian. Moreover, the connected planar and outer planar cographs are characterized and the median and antimedian graphs of connected, planar cographs are listed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Median filtering is a simple digital non—linear signal smoothing operation in which median of the samples in a sliding window replaces the sample at the middle of the window. The resulting filtered sequence tends to follow polynomial trends in the original sample sequence. Median filter preserves signal edges while filtering out impulses. Due to this property, median filtering is finding applications in many areas of image and speech processing. Though median filtering is simple to realise digitally, its properties are not easily analysed with standard analysis techniques,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses our research in developing a generalized and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that concise and accurate classifiers can be constructed to detect anomalies. An overview of the approach that we have implemented is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost self-centered graphs were recently introduced as the graphs with exactly two non-central vertices. In this paper we characterize almost selfcentered graphs among median graphs and among chordal graphs. In the first case P4 and the graphs obtained from hypercubes by attaching to them a single leaf are the only such graphs. Among chordal graph the variety of almost self-centered graph is much richer, despite the fact that their diameter is at most 3. We also discuss almost self-centered graphs among partial cubes and among k-chordal graphs, classes of graphs that generalize median and chordal graphs, respectively. Characterizations of almost self-centered graphs among these two classes seem elusive

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The median of a profile = (u1, . . . , uk ) of vertices of a graph G is the set of vertices x that minimize the sum of distances from x to the vertices of . It is shown that for profiles with diameter the median set can be computed within an isometric subgraph of G that contains a vertex x of and the r -ball around x, where r > 2 − 1 − 2 /| |. The median index of a graph and r -joins of graphs are introduced and it is shown that r -joins preserve the property of having a large median index. Consensus strategies are also briefly discussed on a graph with bounded profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a non empty set S of vertices of a graph, the partiality of a vertex with respect to S is the di erence between maximum and minimum of the distances of the vertex to the vertices of S. The vertices with minimum partiality constitute the fair center of the set. Any vertex set which is the fair center of some set of vertices is called a fair set. In this paper we prove that the induced subgraph of any fair set is connected in the case of trees and characterise block graphs as the class of chordal graphs for which the induced subgraph of all fair sets are connected. The fair sets of Kn, Km;n, Kn e, wheel graphs, odd cycles and symmetric even graphs are identi ed. The fair sets of the Cartesian product graphs are also discussed