5 resultados para measurement techniques
em Cochin University of Science
Investigation of dielectric and elastic properties of selected dielectric ceramics and oxide glasses
Resumo:
The dielectric and elastic properties are of considerable significance to the science and technology of matter in the solid state. The study of these properties give information about the magnitude of the forces and nature of the bonding between the atoms. Our aim has been to investigate systematically the effect of doping of an appropriate element on the elastic and dielectric properties of selected dielectric ceramics and oxide glasses. These materials have got wide technological applications due to their interesting electrical, optical, thermal and elastic behaviour. Ultrasound propagation and capacitance measurement techniques have been employed for the systematic investigation of the elastic and dielectric properties of selected number of these materials. Details of the work done and results obtained are presented in this thesis.
Resumo:
RMS measuring device is a nonlinear device consisting of linear and nonlinear devices. The performance of rms measurement is influenced by a number of factors; i) signal characteristics, 2) the measurement technique used and 3) the device characteristics. RMS measurement is not simple, particularly when the signals are complex and unknown. The problem of rms measurement on high crest-factor signals is fully discussed and a solution to this problem is presented in this thesis. The problem of rms measurement is systematically analized and found to have mainly three types of errors: (1) amplitude or waveform error 2) Frequency error and (3) averaging error. Various rms measurement techniques are studied and compared. On the basis of this study the rms -measurement is reclassified three categories: (1) Wave-form-error-free measurement (2) High-frequncy-error measurement and (3) Low-frequency error-free measurement. In modern digital sampled-data systems the signals are complex and waveform-error-free rms measurement is highly appreciated. Among the three basic blocks of rms measuring device the squarer is the most important one. A squaring technique is selected, that permits shaping of the squarer error characteristic in such a way as to achieve waveform-errob free rms measurement. The squarer is designed, fabricated and tested. A hybrid rms measurement using an analog rms computing device and digital display combines the speed of analog techniques and the resolution and ease of measurement of digital techniques. An A/D converter is modified to perform the square-rooting operation. A 10-V rms voltmeter using the developed rms detector is fabricated and tested. The chapters two, three and four analyse the problems involved in rms measurement and present a comparative study of rms computing techniques and devices. The fifth chapter gives the details of the developed rms detector that permits wave-form-error free rms measurement. The sixth chapter, enumerates the the highlights of the thesis and suggests a list of future projects
Resumo:
With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.
Resumo:
The aerosols in the atmosphere play major role in the radiation balance of the Earthatmosphere system. Direct and indirect impact of aerosols on the weather and climate still remains as a topic to be investigated in detail. The effect of aerosols on the radiation budget and thereby circulation pattern is important and requires further study. A detailed analysis of the aerosol properties, their variability and meteorological processes that affect the aerosol properties and distribution over the Indian region is performed in the thesis. The doctoral thesis entitled “Characteristics of aerosols over the Indian region and their variability associated with atmospheric conditions” contains 7 chapters. This thesis presents results on the analysis on the distribution (spatial and temporal) and characteristics of the aerosols over the Indian region and adjoining seas. Regional and stationwise data were analysed and methods such as modeling and statistical analysis are implemented to understand the aerosol properties, classification and transportation. Chapter-1 presents a brief introduction on the aerosols, their measurement techniques, impact of aerosols on the atmospheric radiation budget, climatic and geographic features of the study area and the literature review on the previous studies. It provides a basic understanding in the field of study and objective of the thesis. Definition of the aerosols, their sources/sinks and classification of the particles according to optical and microphysical properties are described. Different measurement techniques such as sampling and remote sensing methods are explained in detail. Physical parameters used to describe aerosol properties and effect of aerosols on the radiation distribution are also discussed. The chapter also explains the objectives of the thesis and description of climatic features of the study area.
Resumo:
The application of computer vision based quality control has been slowly but steadily gaining importance mainly due to its speed in achieving results and also greatly due to its non- destnictive nature of testing. Besides, in food applications it also does not contribute to contamination. However, computer vision applications in quality control needs the application of an appropriate software for image analysis. Eventhough computer vision based quality control has several advantages, its application has limitations as to the type of work to be done, particularly so in the food industries. Selective applications, however, can be highly advantageous and very accurate.Computer vision based image analysis could be used in morphometric measurements of fish with the same accuracy as the existing conventional method. The method is non-destructive and non-contaminating thus providing anadvantage in seafood processing.The images could be stored in archives and retrieved at anytime to carry out morphometric studies for biologists.Computer vision and subsequent image analysis could be used in measurements of various food products to assess uniformity of size. One product namely cutlet and product ingredients namely coating materials such as bread crumbs and rava were selected for the study. Computer vision based image analysis was used in the measurements of length, width and area of cutlets. Also the width of coating materials like bread crumbs was measured.Computer imaging and subsequent image analysis can be very effectively used in quality evaluations of product ingredients in food processing. Measurement of width of coating materials could establish uniformity of particles or the lack of it. The application of image analysis in bacteriological work was also done