9 resultados para mathematics pre-service teachers
em Cochin University of Science
Resumo:
In this paper, we study a k-out-of-n system with single server who provides service to external customers also. The system consists of two parts:(i) a main queue consisting of customers (failed components of the k-out-of-n system) and (ii) a pool (of finite capacity M) of external customers together with an orbit for external customers who find the pool full. An external customer who finds the pool full on arrival, joins the orbit with probability and with probability 1− leaves the system forever. An orbital customer, who finds the pool full, at an epoch of repeated attempt, returns to orbit with probability (< 1) and with probability 1 − leaves the system forever. We compute the steady state system size probability. Several performance measures are computed, numerical illustrations are provided.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
This thesis entitled' On Queues with Interruptions and Repeat or Resumption of Service' introduces several new concepts into queues with service interruption. It is divided into Seven chapters including an introductory chapter. The following are keywords that we use in this thesis: Phase type (PH) distribution, Markovian Arrival Process (MAP), Geometric Distribution, Service Interruption, First in First out (FIFO), threshold random variable and Super threshold random variable. In the second chapter we introduce a new concept called the 'threshold random variable' which competes with interruption time to decide whether to repeat or resume the interrupted service after removal of interruptions. This notion generalizes the work reported so far in queues with service interruptions. In chapter 3 we introduce the concept of what is called 'Super threshold clock' (a random variable) which keeps track of the total interruption time of a customer during his service except when it is realized before completion of interruption in some cases to be discussed in this thesis and in other cases it exactly measures the duration of all interruptions put together. The Super threshold clock is OIl whenever the service is interrupted and is deactivated when service is rendered. Throughout this thesis the first in first out service discipline is followed except for priority queues.
Resumo:
In this thesis we have studied a few models involving self-generation of priorities. Priority queues have been extensively discussed in literature. However, these are situations involving priority assigned to (or possessed by) customers at the time of their arrival. Nevertheless, customers generating into priority is a common phenomena. Such situations especially arise at a physicians clinic, aircrafts hovering over airport running out of fuel but waiting for clearance to land and in several communication systems. Quantification of these are very little seen in literature except for those cited in some of the work indicated in the introduction. Our attempt is to quantify a few of such problems. In doing so, we have also generalized the classical priority queues by introducing priority generation ( going to higher priorities and during waiting). Systematically we have proceeded from single server queue to multi server queue. We also introduced customers with repeated attempts (retrial) generating priorities. All models that were analyzed in this thesis involve nonpreemptive service. Since the models are not analytically tractable, a large number of numerical illustrations were produced in each chapter to get a feel about the working of the systems.
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
In everyday life different flows of customers to avail some service facility or other at some service station are experienced. In some of these situations, congestion of items arriving for service, because an item cannot be serviced Immediately on arrival, is unavoidable. A queuing system can be described as customers arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served. Examples Include shoppers waiting in front of checkout stands in a supermarket, Programs waiting to be processed by a digital computer, ships in the harbor Waiting to be unloaded, persons waiting at railway booking office etc. A queuing system is specified completely by the following characteristics: input or arrival pattern, service pattern, number of service channels, System capacity, queue discipline and number of service stages. The ultimate objective of solving queuing models is to determine the characteristics that measure the performance of the system
Resumo:
In this thesis the queueing-inventory models considered are analyzed as continuous time Markov chains in which we use the tools such as matrix analytic methods. We obtain the steady-state distributions of various queueing-inventory models in product form under the assumption that no customer joins the system when the inventory level is zero. This is despite the strong correlation between the number of customers joining the system and the inventory level during lead time. The resulting quasi-birth-anddeath (QBD) processes are solved explicitly by matrix geometric methods
Resumo:
In this thesis, certain continuous time inventory problems with positive service time under local purchase guided by N/T-policy are analysed. In most of the cases analysed, we arrive at stochastic decomposition of system states, that is, the joint distribution of the system states is obtained as the product of marginal distributions of the components. The thesis is divided into ve chapters