11 resultados para manufacture
em Cochin University of Science
Resumo:
The main objectives of the investigations reported in the present thesis are the following: (1) to find out some industrial wastes as cheaper additives to augment the air-blowing polymerization process of bitumen. This will bring down the cost of production of industrial bitumen which can be applied for the manufacture of bitumenous paints, roofing and flooring materials etc. (2) to find out suitable promoters for the above additives. This will bring down the consumption of the additives (3) to help in the industrial pollution control (4) to investigate the usefulness of the industrial bitumen produced in the production of bituminous paints (5) to find out thekinetic parameters of the reactions invovled with different additives. This is essential for the design, construction and operation of new industrial bitumen plants using the additives investigated. This will also enable us to establish the mechanism of the reactions involved in the process
Resumo:
Tailored ion imprinted polymer materials for the preconcentrative separation of noble metals. This study deals with the synthesis, separation,characterization and analytical application of the noble metals especially palladium and platinum. Platinum group metals(PGM) are currently receiving world wide attention. This group include Palladium(Pt),rhodium(Rh), ruthenium(Ru), iridium(Ir) and osmium(Os).PGM are used as catalysts for a wide variety of hydrogenation, oxidation, isomerization,cyclization,dehydrogenation and dehalogenation reactions.The corrosion resistance of PGM enables them to use in jewellery,electrical and glass industries,extrusion of synthetic fibres,manufacture of laboratory utensils,dental and medical devices. This study clearly establishes selective recovery of platinum from other noble and transition elements.
Resumo:
Plasticized poly(vinyl chloride) (pPVC), although a major player in the medical field, is at present facing lot of criticism due to some of its limitations like the leaching out of the toxic plasticizer, di ethylhexyl phthalate (DEHP) to the medium and the emission of an environmental pollutant,dioxin gas,at the time of the post use disposal of PVC Products by incineration. Due to these reasons, efforts are on to reduce the use of pPVC considerably in the medical field and to find viable alternative materials. The present study has been undertaken in this context to find a suitable material for the manufacture of medical aids in place of pPVC. The main focus of this study has been to find out a non-DEHP material as plasticizer for pPVC and another suitable material for the complete repalcement of pPVC for blood/ blood component storage applications.Two approaches have been undertaken for this purpose-(1)the controversial plasticizer, DEHP has been partially replaced by polymeric plasticizers(2) an alternative material, namely, metallocene polyolefin (mPO) has been used and suitably modified to match the properties of flexible PVC used for blood and blood component storage applications.
Resumo:
A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.
Resumo:
Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency
Resumo:
The properties of synthetic fibres vary with thc inherent physical characteristics of the basic raw materials used mode of preparation of yarns and method of construction of twines. Since the synthetic fibres as maufactured from polymers which are synthesized from simple chemical units, the qualities of man-made fibres can he influenced by the process of manufacture and certain modifications can even be introduced at the processing stage to meet any specific requirement to a certain extent. Hence, an elaborate study of the properties of fish not twines produced has been taken up with a view to determining their suitability for various types of fishing gear with particular reference to conditions prevailing in India.
Resumo:
The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.
Resumo:
In the present work, studies on vulcanization, rheology and reinforcement of natural rubber latex with special reference to accelerator combinations, surface active agents and gamma irradiation have been undertaken. In vulcanization, the choice of vulcanization system, the extent and mc-zie of vulcanization and network structure of the vulcanizate are important factors contributing to the overall quality of the product. The vulcanization system may be conventional type using elemental sulfur or a system involving sulfur donors. The latter type is used mainly in the manufacture of heat resistant products. For improving the technical properties of the products such as modulus and tensile strength, different accelerator combinations are used. It is known that accelerators have a strong effect on the physical properties of rubber vulcanizates. A perusal of the literature indicates that fundamental studies on the above aspects of latex technology are very limited. Thereforea systematic study on vulcanization, rheology and reinforcement of natural rubber latex with reference to the effect of accelerator combinations, surface active agents and gamma irradiation has been undertaken. The preparation and evaluation of some products like latex thread was also undertaken as a part of the study. The thesis consists of six chapter
Resumo:
one of the key sectors, identified by the Department of Industries Government of Kerala, for the cluster development initiative is Handloom, which gives employment to over over 50,000 people directly. Despite its age old tradition and fame, the performance of the sector vis-à-vis power looms is not very rosy owing to (i) competition from cheap power loom cloth from other states (ii) scarcity of quality yarn (iii) price escalation of yarn, dyes, chemicals and other raw materials (iv) the shrinking market for handlooms in Kerala (v) non-demand based production and inadequacy of new designs and (vi) inefficiencies in the system, particularly in the co-operative sector. Cluster based approach is adopted in the handloom sector with the objective of providing necessary support mechanism to come out of the crisis that the sector faces now. While four cluster schemes are being implemented in Kerala, it is under IHDS-CDP that the State got a sizeable number of clusters benefiting a large number of societies and weavers- 24 handloom clusters, bringing 152 handloom co-operative societies and over 19,800 handloom workers under the Programme. This research attempts to revisit the underlying rationale and context of the new direction and would attempt to broadly analyze the growth trends under the influence of cluster model adopted by the State IHDS-CDP for the revival of handloom sector through a detailed study of the handloom co-operative societies in Kerala. If handloom sector in Kerala can be revived using cluster based approach, it can be easily concluded that cluster is capable of taking the MSME in Kerala to a ‘high growth path.’ The study is aimed at understanding how best clusters emerge as appropriate industrial organization suitable for the current global structure of manufacture
Resumo:
Professor Irma Glicman Adelman, an Irish Economist working in California University at Berkely, in her research work on ‘Development Over Two Centuries’, which is published in the Journal of Evolutionary Economics, 1995, has identified that India, along with China, would be one of the largest economies in this 21st Century. She has stated that the period 1700 - 1820 is the period of Netherlands, the period 1820 - 1890 is the period of England the period 1890 - 2000 is the period of America and this 21st Century is the century of China and India. World Bank has also identified India as one of the leading players of this century after China. India will be third largest economy after USA and China. India will challenge the Global Economic Order in the next 15 years. India will overtake Italian economy in 2015, England economy in 2020, Japan economy in 2025 and USA economy in 2050 (China will overtake Japan economy in 2016 and USA economy in 2027). India has the following advantages compared with other economies. India is 4th largest GDP in the world in terms of Purchasing Power. India is third fastest growing economy in the world after China and Vietnam. Service sector contributes around 57% of GDP. The share of agriculture is around 17% and Manufacture is 16% in 2005 - 2006. This is a character of a developed country. Expected GDP growth rate is 10% shortly (It has come down from 9.2% in 2006 - 2007 to 6.2% during 2008 - 2009 due to recession. It is only a temporary phenomenon). India has $284 billion as Foreign Exchange Reserve as on today. India had just $1 billion as Foreign Exchange Reserve when it opened its economy in the year 1991. In this research paper an attempt has been made to study the two booming economies of the globe with respect to their foreign exchange reserves. This study mainly based on secondary data published by respective governments and various studies done on this area
Resumo:
Fish and fishery products are having a unique place in global food market due to its unique taste and flavour; moreover, the presence of easily digestible proteins, lipids, vitamins and minerals make it a highly demanded food commodity.Fishery products constitute a major portion of international trade, which is a valuable source of foreign exchange to many developing countries.Several new technologies are emerging to produce various value added products from food; “extrusion technology” is one among them. Food extruder is a better choice for producing a wide variety of high value products at low volume because of its versatility. Extruded products are shelf-stable at ambient temperature. Extrusion cooking is used in the manufacture of food products such as ready-to-eat breakfast cereals, expanded snacks, pasta, fat-bread, soup and drink bases. The raw materialin the form of powder at ambient temperature is fed into extruder at a known feeding rate. The material first gets compacted and then softens and gelatinizes and/or melts to form a plasticized material, which flows downstream into extruder channel and the final quality of the end products depends on the characteristics of starch in the cereals and protein ingredient as affected by extrusion process. The advantages of extrusion process are the process is thermodynamically most efficient, high temperature short time enables destruction of bacteria and anti-nutritional factors, one step cooking process thereby minimizing wastage and destruction of fat hydrolyzing enzymes during extrusion process and enzymes associated with rancidity.