9 resultados para mammalian target of rapamycin inhibitor
em Cochin University of Science
Resumo:
Protease inhibitors are one of the most important tools of nature for regulating the proteolytic activity of their target proteases. They are synthesized in biological systems and they play a critical role in controlling a number of diverse physiological functions. The current investigation focused on the isolation, purification and characterization of a novel protease inhibitor from Moringa oleifera. The results obtained during the course of study opens new perspectives for the utilization of protease inhibitor from Moringa oleifera for various pharmaceutical, agricultural and food industries. The biological and physicochemical properties exhibited by the novel protease inhibitor from Moringa oleifera clearly testify its suitability for the development as a drug for application in pharmaceutical industries such as anticoagulant agent or biocontrol agent in agriculture and even as a food preservant. There is a scope for further research on the structure elucidation and protein engineering towards a wide range of further applications. Detailed structure/function analysis of these proteins is important to facilitate their use in genetic engineering for various applications.
Resumo:
Protease inhibitors are found abundantly in numerous plants, animals and microorganisms, owing their significance to their application in the study of enzyme structures, reaction mechanisms and also their utilization in pharmacology and agriculture. They are (synthetic/natural) substances that act directly on proteases to lower the catalytic rate. Although most of these inhibitory proteins are directed against serine proteases, some target cysteine, aspartyl or metalloproteases (Bode and Huber, 1992). Protease inhibitors are essential for regulating the activity of their corresponding proteases and play key regulatory roles in many biological processes. Applications of protease inhibitors are intimately connected to the proteases they inhibit; an overview of proteases with the modes of regulation of their proteolytic activity is discussed
Resumo:
Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043×10−10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases
Resumo:
The thesis entitled: ‘Synthesis and Photochemistry of a few Olefin appended Dibenzobarrelenes and Bisdibenzobarrelenes’ is divided into 5 chapters.In Chapter 1, the fundamental concepts of Diels-Alder reaction, di-r:methane rearrangement and energy transfer process in organic photochemistry is discussed.Chapter 2 presents the synthesis of 9-olefin appended anthracenes and bisanthracenes. The target of synthesising various bridgehead olefin appended dibenzobarrelenes and some novel bisdibenzobarrelenes, led us to the synthesis of the appropriate alkenylanthracenes and bisanthracenes as precursor molecules. Diels-Alder reaction was the synthetic tool for the preparation of the target olefin appended dibenzobarrelenes and bisdibenzobarrelenes. This chapter attempts to throw light on our endeavours in synthesising the various 9-alkenylanthracenes and bisanthracenes.Chapter 3 deals with the synthesis of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Ever since the discovery of di-It-methane rearrangement dibenzobarrelenes, tailored with dijferent substituents at various positions have always been a tool to photochemists in unravelling the mechanisms of light induced reactions. Our intention of analysing the role of a It-moiety at the bridgehead position of the dibenzobarrelene, was synthetically envisaged via the Diels-Alder reaction. Bisdibenzobarrelenes were synthesised through tandem Diels-Alder reaction. Various alkenylanthracenes and bisanthracenes were employed as dienes and the dienophiles used were dimethyl acetylenedicarboxylate and dibenzoylacetylene. In this chapter, we report our venture in synthesising the various olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Chapter 4 describes the preliminary time-resolved fluorescence studies of some olefin appended dibenzobarrelenes and bisdibenzobarrelenes.To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes.Chapter 5 portrays the photochemistry of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Dibenzocyclooctatetraene and dibenzosemibullvalene are the photoproducts obtained respectively through the singlet excited state and the triplet excited state of dibenzobarrelenes. Chemical literature shows evidences of the photoreactivity of dibenzobarrelenes generating both the singlet and triplet mediated photoproducts, in a single photoreaction. Our research target in synthesising various bridgehead olefin appended dibenzobarrelenes and bisdibenzobarrelenes, was based on the perception that olefins are eflicient triplet quenchers, thereby quenching intramolecularly the triplet excited state of the barrelenes. A It-moiety at the bridgehead position of the dibenzobarrelene, creates a tetra tr-methane system, which similar to a 6li—7l' or tri-tr-methane systems, could be the fertile ground for interesting photochemical rearrangements. Our attempts in deciphering the photochemistry of the olefin appended dibenzobarrelenes and bisdibenzobarrelenes is the substance of this chapter.
Resumo:
The adult mammalian liver is predominantly in a quiescent state with respect to cell division. This quiescent state changes dramatically, however, if the liver is injured by toxic, infectious or mechanic agents (Ponder, 1996). Partial hepatectomy (PH) which consists of surgical removal of two-thirds of the liver, has been used to stimulate hepatocyte proliferation (Higgins & Anderson 1931). This experimental model of liver regeneration has been the target of many studies to probe the mechanisms responsible for liver cell growth control (Michalopoulos, 1990; Taub, 1996). After PH most of the remaining cells in the renmant liver respond with co-ordinated waves of DNA synthesis and divide in a process called compensatory hyperplasia. Hence, liver regeneration is a model of relatively synchronous cell cycle progression in vivo. In contrast to hepatomas, cell division is terminated under some intrinsic control when the original cellular mass has been regained. This has made liver regeneration a useful model to dissect the biochemical and molecular mechanisms of cell division regulation. The liver is thus, one of the few adult organs that demonstrates a physiological growth rewonse (Fausto & Mead, 1989; Fausto & Webber, 1994). The regulation of liver cell proliferation involves circulating or intrahepatic factors that are involved in either the priming of hepatocytes to enter the cell cycle (Go to G1) or progression through the cell cycle. In order to understand the basis of liver regeneration it is mandatory to define the mechanisms which (a) trigger division, (b) allow the liver to concurrently grow and maintain dilferentiated fimction and (c) terminate cell proliferation once the liver has reached the appropriate mass. Studies on these aspects of liver regeneration will provide basic insight of cell growth and dilferentiation, liver diseases like viral hepatitis, toxic damage and liver transplant where regeneration of the liver is essential. In the present study, Go/G1/S transition of hepatocytes re-entering the cell cycle after PH was studied with special emphasis on the involvement of neurotransmitters, their receptors and second messenger function in the control of cell division during liver regeneration
Resumo:
Poisoning by pesticides from agricultural fields is a serious water pollution problem and its environmental long-term effect may result in the incidence of poisoning of fish and other aquatic life forms (jyothi and Narayan, 1999). Fishes like Heteropneustesfbssilis and C/arius batrac/nus are especially prone to serious pesticide pollution as their habitat is mostly the agriculture area. Though only few studies are conducted in this area, it can be assessed from the local information that, population of such fish is on the verge of vulnerability due to extensive use of pesticides. The knowledge of sublethal effects of xenobiotic compounds on hematological parameters, enzyme activities and metabolite concentrations is very important to delineate the fish health status and provide a future understanding of ecological impacts. These pesticides act by causing inhibition of cholinesterase enzymes (ChE) by formation of enzyme inhibitor complex (O'Brien, 1976) and damaging the nervous system. These effects may result in metabolic disorders. Associated to cholinesterase activities, a study of other enzymes such as phosphatases and aminotransferases close to intermediary metabolite determination provides a wider view of metabolism. Interest in toxicological aspects has grown in recent years and research is now increasingly focused on mechanistic aspects of oxidative damage and cellular responses in biological system. The term ‘biomarker’ is generally used in a broad sense to include almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical or biological (WHO, 1993). As biomarker stands for immediate responses, they are used as early warning signals of biological effects caused by environmental pollutants. The present work attempts to assess the toxicity of organophosphorus insecticide monocrotophos on the experimental organism selected for this study namely stinging catfish (Heteropneustesfossi/is) (Bloch), and to probe into the stress responses of the organism
Resumo:
Protease inhibitors have great demand in medicine and biotechnology. We report here the purification and characterization of a protease inhibitor isolated from mature leaf extract of Moringa oleifera that showed maximum inhibitor activity. The protease inhibitor was purified to 41.4-fold by Sephadex G75 and its molecular mass was calculated as 23,600 Da. Inhibitory activity was confirmed by dot-blot and reverse zymogram analyses. Glycine, glutamic acid, alanine, proline and aspartic acid were found as the major amino acids of the inhibitor protein. Maximal activity was recorded at pH 7 and at 40 ◦C. The inhibitor was stable over pH 5–10; and at 50 ◦C for 2 h. Thermostability was promoted by CaCl2, BSA and sucrose. Addition of Zn2+ and Mg2+, SDS, dithiothreitol and -mercaptoethanol enhanced inhibitory activity, while DMSO and H2O2 affected inhibitory activity. Modification of amino acids at the catalytic site by PMSF and DEPC led to an enhancement in the inhibitory activity. Stoichiometry of trypsin–protease inhibitor interaction was 1:1.5 and 0.6 nM of inhibitor effected 50% inhibition. The low Ki value (1.5 nM) obtained indicated scope for utilization of M. oliefera protease inhibitor against serine proteases
Resumo:
Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine
Resumo:
Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes