4 resultados para listeria monocytogenes
em Cochin University of Science
Resumo:
Bacteriological quality of individually quick frozen (IQF) shrimp products produced from aquacultured tiger shrimp (Penaeus monodon) has been analysed in terms of aerobic plate count (APC), coliforms, Escherichia coli, coagulase-positive staphylococci, Salmonella, and Listeria monocytogenes. Eight hundred forty-six samples of raw, peeled, and deveined tail-on (RPTO), 928 samples of cooked, peeled, and deveined tail-on (CPTO), 295 samples of headless, undeveined shell-on (HLSO), and 141 samples of raw, peeled, and deveined tail-off (RPND) shrimps were analysed for the above bacteriological parameters. Salmonella was isolated in only one sample of raw, peeled tail-on. Serotyping of the strain revealed that it was S. typhimurium. While none of the cooked, peeled tail-on shrimp samples exceeded the aerobic plate count (APC) of 105 colony forming units per gram (cfu/g), 2.5% of raw, peeled, tail-on, 6.4% of raw, peeled tail-off, and 7.5% of headless shell-on shrimp samples exceeded that level. Coliforms were detected in all the products, though at a low level. Prevalence of coliforms was higher in headless shell-on (26%) shrimps followed by raw, peeled, and deveined tail-off (19%), raw, peeled tail-on (10%), and cooked, peeled tail-on (3.8%) shrimps. While none of the cooked, peeled tail-on shrimp samples were positive for coagulase-positive staphylococci and E. coli, 0.6–1.3% of the raw, peeled tail-on were positive for staphylococci and E. coli, respectively. Prevalence of staphylococci was highest in raw, peeled tail-off (5%) shrimps and the highest prevalence of E. coli (4.8%) was noticed in headless shell-on shrimps. L. monocytogenes was not detected in any of the cooked, peeled tail-on shrimps. Overall results revealed that the plant under investigation had exerted good process control in order to maintain superior bacteriological quality of their products
Resumo:
Pathogenic microorganisms such as Bacillus cereus, Listeria Monocytogenes and Staphylococcus sp have caused serious diseases, and consequently contributed to considerable economic loss in the food and agricultural industries. Antibiotics have been practically used to treat these pathogens since penicillin G was discovered more than half a century ago. Many different types of antibiotics have been discovered or synthesized to control pathogenic microorganisms. Repetitive use and misuse of antibiotics by the agricultural and pharmaceutical industries have caused the emergence of multidrug-resistant microorganisms, even to the strongest antibiotics currently available; therefore, the rapid development of more effective antimicrobial compounds is required to keep pace with demand. Bacteria were isolated from marine water and sediment samples collected from various locations off the coast of Cochin and salt pans of Tuticorin using pour plate technique. One hundred and twelve isolates were obtained. Seventeen isolates exhibiting antimicrobial activity were segregated after primary screening. The secondary screening which was aimed at selection of bacteria that produce proteinaceous inhibitory compounds, helped to select five strains viz. BTFK101, BTHT8, BTKM4, BTEK16 and BTSB22. The five isolates inhibited the growth of six Gram positive test organisms viz. B. cereus, B. circulans, B. coagulans, B. pumilus, Staphylococcus aureus and Clostridium perfringens. After quantitative estimation of the bacteriocin production, the two strains BTFK101 and BTHT8 were selected for further study.
Resumo:
The diversity and load of heterotrophic bacteria and fungi associated with the mangrove soil from Suva, Fiji Islands, was determined by using the plate count method. The ability of the bacterial isolates to produce various hydrolytic enzymes such as amylase, gelatinase and lipase were determined using the plate assay. The heterotrophic bacterial load was considerably higher than the fungal load. There was a predominance of the gram positive genus, Bacillus. Other genera encountered included Staphylococcus, Micrococcus, Listeria and Vibrio. Their effectiveness on the degradation of commercial polythene carry bags made of high density polyethylene (HDPE) and low density polyethylene (LDPE) was studied over a period of eight weeks in the laboratory. Biodegradation was measured in terms of mean weight loss, which was nearly 5 % after a period of eight weeks. There was a significant increase in the bacterial load of the soil attached to class 2 (HDPE) polythene. After eight weeks of submergence in mangrove soil, soil attached to class 1 and class 3 polythene mostly had Bacillus (Staphylococcus predominated in class 2 polythene). While most of the isolates were capable of producing hydrolytic enzymes such as amylase and gelatinase, lipolytic activity was low. Class 2 HDPE suffered the greatest biodegradation.
Resumo:
TThe invention of novel antibiotics and other bioactive microbial metabolites continues to be an important aim in new drug discovery programmes. Actinomycetes have the potential to synthesize lots of diverse biologically vigorous secondary metabolites and in the last decades actinomycetes became the most productive source for antibiotics. Therefore in the present study we analyze the antibacterial activity of the actinomycetes isolated from grassland soil samples of Tropical Montane forest. A total of 33 actinomycete strains isolated were characterized and screened for antibacterial activities using well diffusion method against six specific pathogenic organisms. Identification of the isolates revealed that the majority of them were belonging to Streptomycetes followed by Nocardia, Micromonospora, Pseudonocardia, Streptosporangium, Nocardiopsis and Saccharomonospora. Among the 33 isolates, Gr1 strain showed antagonistic activity against all checked pathogens. Nine strains showed antibacaterial activity against Listeria, Vibrio cholera, Bacillus cereus, Staphylococcus aureus and Salmonella typhi and only 2 strains (Gr1and Gr25) showed antagonism to E. coli. The overall percentage of activity of actinomycetes isolates against each pathogenic bacterium was also calculated. While 63.63% of the actinomycetes were antagoinistic against Listeria, Vibrio cholerae, and Bacillus cereus, 60.6% of them were antagonistic to Staphylococcus aureus. Very few isolates (6.06%) showed antibacterial activity against E. coli. In general most of the actinomycetes isolates were antagonistic to grampositive bacteria such as Listeria, Bacillus and Staphylococcus than Gram-negative bacteria Vibrio cholerae, E. coli and Salmonella