6 resultados para likelihood profile function
em Cochin University of Science
Resumo:
A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2
Resumo:
The median of a profile = (u1, . . . , uk ) of vertices of a graph G is the set of vertices x that minimize the sum of distances from x to the vertices of . It is shown that for profiles with diameter the median set can be computed within an isometric subgraph of G that contains a vertex x of and the r -ball around x, where r > 2 − 1 − 2 /| |. The median index of a graph and r -joins of graphs are introduced and it is shown that r -joins preserve the property of having a large median index. Consensus strategies are also briefly discussed on a graph with bounded profiles.
Resumo:
A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed