7 resultados para laser diode arrays

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ~3.89 eV and they had transmission of~55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ~3.28 eV, an average optical transmission of ~85% and n-type carrier density of~4.6×1019 cm− 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work is mainly concentrated on setting up a NIR tunable diode laser absorption (TDLA) spectrometer for high-resolution molecular spectroscopic studies. For successfully recording the high-resolution tunable diode laser spectrum, various experimental considerations are to be taken into account like the setup should be free from mechanical vibrations, sample should be kept at a low pressure, laser should be in a single mode operation etc. The present experimental set up considers all these factors. It is to be mentioned here that the setting up of a high resolution NIR TDLA spectrometer is a novel experiment requiring much effort and patience. The analysis of near infrared (NIR) vibrational overtone spectra of some substituted benzene compounds using local mode model forms another part of the present work. An attempt is made to record the pulsed laser induced fluorescence/Raman spectra of some organic compounds. A Q-switched Nd:YAG laser is used as the excitation source. A TRIAX monochromator and CCD detector is used for the spectral recording. The observed fluorescence emission for carbon disulphide is centered at 680 nm; this is assigned as due to the n, p* transition. Aniline also shows a broad fluorescence emission centered at 725 nm, which is due to the p,p* transition. The pulsed laser Raman spectra of some organic compounds are also recorded using the same experimental setup. The calibration of the set up is done using the laser Raman spectra of carbon tetrachloride and carbon disulphide. The observed laser Raman spectra for aniline, o-chloroaniline and m-chlorotoluene show peaks characteristics of the aromatic ring in common and the characteristics peaks due to the substitutuent groups. Some new peaks corresponding to low-lying vibrations of these molecules are also assigned

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymethyl methacrylate (PMMA) optical fibres are fabricated by a preform drawing process. The Raman spectra of PMMA fibres are recorded using a diode pumped solid state laser emitting at 532 nm and a CCD-spectrograph in the 400–3800 cm−1 range. The variation of the Raman intensity with the length of the optical fibre is studied. Investigations are carried out on the variation of FWHM of the Raman peak at 2957 cm−1 with the length of the optical fibre and pump power. The differential scattering cross section and gain coefficient of the Raman peak at 2957 cm−1 in PMMA are calculated in relation to that of toluene

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of molecules containing X-H oscillators (X = C, N, O...) has become an effective tool for the study of molecular structure, dynamics, inter and intramolecular interactions, conformational aspects and substituent effects in aliphatic and aromatic compounds. In the present work, the author studied the NIR overtone spectra of some liquid phase organic compounds. The analysis of the CH, NH and OH overtones yielded important structural information about these systems. In an attempt to get information on electronic energy levels, we studied the pulsed Nd:YAG laser induced fluorescence spectra of certain organic compounds. The pulsed laser Raman spectra of some organic compounds are also studied. The novel high resolution technique of near infrared tunable diode laser absorption spectroscopy (TDLAS) is used to record the rotational structure of the second OH overtone spectrum of 2-propanol. The spectral features corresponding to the different molecular conformations could be identified from the high resolution spectrum. The whole work described in this thesis is divided into five chapters.