3 resultados para intramolecular hydrogen bond

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The title compound, C21H19N3O2S, exists in the thione form. The configuration about the C N bond is E. The hydrazinecarbothioamide unit adopts an almost planar arrangement, with maximum deviations of 0.016 (3) and 0.016 (2) A ° for the two thiourea N atoms. An intramolecular O—H N hydrogen bond occurs. Weak intermolecular N— H S, C—H O and C—H interactions are observed in the crystal structure

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The title compound, C15H16N4S, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the N—N distance [1.3697 (17) A ° ] is due to extensive delocalization with the pyridine ring. The hydrazine– carbothioamide unit is almost planar, with a maximum deviation of 0.013 (2) A ° for the amide N atom. The stability of this conformation is favoured by the formation of an intramolecular N—H N hydrogen bond. The packing of the molecules involves no classical intermolecular hydrogenbonding interactions; however, a C—H interaction occurs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions involving fulvenes and its derivatives have received a great deal of attention over the years in synthetic organic chemistry. Functionalizations of fulvenes provide versatile and powerful approaches to various polycyclic systems and natural products. They serve as versatile intermediates in the construction of various ring systems through inter- as well as intramolecular cycloadditions. Compared to the rich literature on the cycloaddition reactions of pentafulvenes, much less attention has been paid to the synthetic utilization of their cycloadducts. Tactical manipulations on the chosen adduct offer the prospects for designing a variety of useful molecular skeletons. Addition of heterodienophiles to fulvenes offers an efficient strategy towards the synthesis of azabicyclic olefins. However, there have been no serious attempts to study the synthetic utility of these substrates. In this context and with the intention of utilizing pentafulvenes towards synthetically important molecules, author decided to explore the reactivity of pentafulvene derived azabicyclic olefins. Our attention was focused on the synthetic potential associated with the ring opening of fulvene derived bicyclic hydrazines under palladium catalysis. It was envisioned that the desymmetrization of these adducts using various soft nucleophiles will provide a novel access to synthetically and biologically important alkylidene cyclopentenes. The investigations along this line form the focal theme of this thesis entitled “PALLADIUM CATALYZED CARBONCARBON/ CARBON-HETEROATOM BOND FORMATION REACTIONS UTILIZING PENTAFULVENE DERIVED BICYCLIC HYDRAZINES