6 resultados para interstellar clouds
em Cochin University of Science
Resumo:
Motivation for the present study is to improve the scienti c understanding on the prominent gap areas in the average three-dimensional distribution of clouds and their impact on the energetics of the earth-atmosphere system. This study is focused on the Indian subcontinent and the surrounding oceans bound within the latitude-longitude bands of 30 S to 30 N and 30 E to 110 E. Main objectives of this study are to : (i) estimate the monthly and seasonal mean vertical distributions of clouds and their spatial variations (which provide the monthly and seasonal mean 3-dimensional distributions of clouds) using multi-year satellite data and investigate their association with the general circulation of the atmosphere, (ii) investigate the characteristics of the `pool of inhibited cloudiness' that appear over the southwest Bay of Bengal during the Asian summer monsoon season (revealed by the 3-dimensional distribution of clouds) and identify the potential mechanisms for its genesis, (iii) investigate the role of SST and atmospheric thermo-dynamical parameters in regulating the vertical development and distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds and their descending nature using lidar observations at Thiruvananthapuram (8.5 N, 77 E), a tropical coastal station at the southwest Peninsular India, and (v) assessment of the impact of clouds on the energetics of the earth-atmosphere system, by estimating the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA) and latent heating of the atmosphere by precipitating clouds using satellite data
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.
Tropical Mesoscale Convective Systems and Associated Energetics : Observational and Modeling Studies
Resumo:
The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.
Resumo:
Oceans play a vital role in the global climate system. They absorb the incoming solar energy and redistribute the energy through horizontal and vertical transports. In this context it is important to investigate the variation of heat budget components during the formation of a low-pressure system. In 2007, the monsoon onset was on 28th May. A well- marked low-pressure area was formed in the eastern Arabian Sea after the onset and it further developed into a cyclone. We have analysed the heat budget components during different stages of the cyclone. The data used for the computation of heat budget components is Objectively Analyzed air-sea flux data obtained from WHOI (Woods Hole Oceanographic Institution) project. Its horizontal resolution is 1° × 1°. Over the low-pressure area, the latent heat flux was 180 Wm−2. It increased to a maximum value of 210 Wm−2 on 1st June 2007, on which the system was intensified into a cyclone (Gonu) with latent heat flux values ranging from 200 to 250 Wm−2. It sharply decreased after the passage of cyclone. The high value of latent heat flux is attributed to the latent heat release due to the cyclone by the formation of clouds. Long wave radiation flux is decreased sharply from 100 Wm−2 to 30 Wm−2 when the low-pressure system intensified into a cyclone. The decrease in long wave radiation flux is due to the presence of clouds. Net heat flux also decreases sharply to −200 Wm−2 on 1st June 2007. After the passage, the flux value increased to normal value (150 Wm−2) within one day. A sharp increase in the sensible heat flux value (20 Wm−2) is observed on 1st June 2007 and it decreased there- after. Short wave radiation flux decreased from 300 Wm−2 to 90 Wm−2 during the intensification on 1st June 2007. Over this region, short wave radiation flux sharply increased to higher value soon after the passage of the cyclone.
Resumo:
Due to the advancement in mobile devices and wireless networks mobile cloud computing, which combines mobile computing and cloud computing has gained momentum since 2009. The characteristics of mobile devices and wireless network makes the implementation of mobile cloud computing more complicated than for fixed clouds. This section lists some of the major issues in Mobile Cloud Computing. One of the key issues in mobile cloud computing is the end to end delay in servicing a request. Data caching is one of the techniques widely used in wired and wireless networks to improve data access efficiency. In this paper we explore the possibility of a cooperative caching approach to enhance data access efficiency in mobile cloud computing. The proposed approach is based on cloudlets, one of the architecture designed for mobile cloud computing.