17 resultados para intermediate-temperature buffer layer (ITBF)

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the present work was to automate CSP process, to deposit and characterize CuInS2/In2S3 layers using this system and to fabricate devices using these films.An automated spray system for the deposition of compound semiconductor thin films was designed and developed so as to eliminate the manual labour involved in spraying and facilitate standardization of the method. The system was designed such that parameters like spray rate, movement of spray head, duration of spray, temperature of substrate, pressure of carrier gas and height of the spray head from the substrate could be varied. Using this system, binary, ternary as well as quaternary films could be successfully deposited.The second part of the work deal with deposition and characterization of CuInS2 and In2S3 layers respectively.In the case of CuInS2 absorbers, the effects of different preparation conditions and post deposition treatments on the optoelectronic, morphological and structural properties were investigated. It was observed that preparation conditions and post deposition treatments played crucial role in controlling the properties of the films. The studies in this direction were useful in understanding how the variation in spray parameters tailored the properties of the absorber layer. These results were subsequently made use of in device fabrication process.Effects of copper incorporation in In2S3 films were investigated to find how the diffusion of Cu from CuInS2 to In2S3 will affect the properties at the junction. It was noticed that there was a regular variation in the opto-electronic properties with increase in copper concentration.Devices were fabricated on ITO coated glass using CuInS2 as absorber and In2S3 as buffer layer with silver as the top electrode. Stable devices could be deposited over an area of 0.25 cm2, even though the efficiency obtained was not high. Using manual spray system, we could achieve devices of area 0.01 cm2 only. Thus automation helped in obtaining repeatable results over larger areas than those obtained while using the manual unit. Silver diffusion on the cells before coating the electrodes resulted in better collection of carriers.From this work it was seen CuInS2/In2S3 junction deposited through automated spray process has potential to achieve high efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two stage processes consisting of precursor preparation by thermal evaporation followed by chalcogenisation in the required atmosphere is found to be a feasible technique for the PV materials such as n-Beta In2S3, p-CulnSe2, p-CulnS2 and p-CuIn(Sel_xSx)2. The growth parameters such as chalcogenisation temperature and duration of chalcogenisation etc have been optimised in the present study.Single phase Beta-In2S3 thin films can be obtained by sulfurising the indium films above 300°C for 45 minutes. Low sulfurisation temperatures required prolonged annealing after the sulfurisation to obtain single phase Beta-1n2S3, which resulted in high material loss. The maximum band gap of 2.58 eV was obtained for the nearly stoichiometric Beta-In2S3 film which was sulfurised at 350°C. This wider band gap, n type Beta-In2S3 can be used as an alternative to toxic CdS as window layer in photovoltaics .The systematic study on the structural optical and electrical properties of CuInSe2 films by varying the process parameters such as the duration of selenization and the selenization temperature led to the conclusion that for the growth of single-phase CuInSe2, the optimum selenization temperature is 350°C and duration is 3 hours. The presence of some binary phases in films for shorter selenization period and lower selenization temperature may be due to the incomplete reaction and indium loss. Optical band gap energy of 1.05 eV obtained for the films under the optimum condition.In order to obtain a closer match to the solar spectrum it is desirable to increase the band gap of the CulnSe2 by a few meV . Further research works were carried out to produce graded band gap CuIn(Se,S)2 absorber films by incorporation of sulfur into CuInSe2. It was observed that when the CulnSe2 prepared by two stage process were post annealed in sulfur atmosphere, the sulfur may be occupying the interstitial positions or forming a CuInS2 phase along with CuInSe2 phase. The sulfur treatment during the selenization process OfCu11 ln9 precursors resulted in Culn (Se,S)2 thin films. A band gap of 1.38 eV was obtained for the CuIn(Se,S)2.The optimised thin films n-beta 1n2S3, p-CulnSe2 and p-Culn(Sel-xSx)2 can be used for fabrication of polycrystalline solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As emphasis towards sustainable and Renewable energy resources grows world-wide,interest in the capture and use of solar energy is increasing dramatically.Solar cells have been known and used for many years,but depletion of conventional energy resources resulted in the intensification of research on solar cells leading to new design and technique of fabrication.The current emphasis is directed towards high effiency inexpensive solar cells.This thesis includes deposition and characterization of CuInS2 and In2S3 thin films using chemical Spray Pyrolysis(CSP) technique.The optimum condition for these films to be used as absorber and buffer layer respectively in solar cells were thus found out.Solar cell with the stucture,ITO/CuInS2/In2S3/metal electrode was fabricated using these well-characterized films,which yielded an efficiency of 9.5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work. Sub-micrometre thick CulnSe2 films were prepared using different techniques viz, selenization through chemically deposited Selenium and Sequential Elemental Evaporation. These methods are simpler than co-evaporation technique, which is known to be the most suitable one for CulnSe2 preparation. The films were optimized by varying the composition over a wide range to find optimum properties for device fabrication. Typical absorber layer thickness of today's solar cell ranges from 2-3m. Thinning of the absorber layer is one of the challenges to reduce the processing time and material usage, particularly of Indium. Here we made an attempt to fabricate solar cell with absorber layer of thickness buffer layer, replacing toxic CdS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) spectroscopy is an optical technique that has emerged successful in the field of semiconductor material and device characterization. This technique is quite a powerful one which gives idea about the defect levels in a material, the band gap of the material, composition as well as material quality. Over the recent years it has received an elevation as a mainstream characterization technique. This thesis is an attempt to characterize each individual layer used in a thin film solar cell with special focus on the electrical properties. This will be highly beneficial from the lab as well as industrial point of view because electrical measurements generally are contact mode measurements which tend to damage the surface. As far as a thin film solar cell is concerned, the constituent layers are the transparent conducting oxide (TCO), absorber layer, buffer layer and top electrode contact. Each layer has a specific role to play and the performance of a solar cell is decided and limited by the quality of each individual layer. Various aspects of PL spectroscopy have been employed for studying compound semiconductor thin films [deposited using chemical spray pyrolysis (CSP)] proposed for solar cell application. This thesis has been structured in to seven chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study on upper ocean responses to atmospheric forcing (associated with cyclone passage) in North Indian Ocean revealed significant variability between AS and BoB. The analysis of cyclone frequency during 1947 to 2006 exhibited lesser frequency of cyclones in AS than that of BoB. The analysis also revealed significant reduction in cyclone frequency after the year 1976 with substantial reduction during monsoon season. The long term SST data at selected points in AS and BoB could not reveal any relation with reduction in cyclone frequency. However the SLP at same locations exhibited considerable increase during mid 1970’s, which could have contributed to the observed reduction in cyclone frequency after the year 1976.The response in waves during cyclone passage exhibited significant asymmetry on either side of the track in AS and BoB and the response is observed at 100’s of kilometers away from the track. The significant clockwise rotation in wave direction is observed on the right side of the track starting from near the track to far away locations, which existed for a longer duration. However, the anticlockwise rotation in wave direction is observed over a shorter distance on the left side of the track and dissipated immediately.Inertial oscillation is observed in surface current and in the mixed layer temperature associated with cyclone passage, which revealed the role of relative location(s) on either side of the track. The inertial peak closer to the local inertial period indicates maximum transfer of energy during the cyclone passage in both AS and BoB. The absence of strong inertial oscillation even with clockwise rotation in surface current and wind indicates the dominant role of duration of strong wind in generating inertial oscillation.The oceanic response associated with cyclone passage reveal the variable response(s) which depends on cyclone intensity, the proximity to track and cyclone translation speed. It is observed that resonance with wind generates higher response in surface current, wave and SST on the right side of the track and it lasts for a longer duration. The maximum oceanic response is observed at a few kilometers away on right side of the track. However lesser rightward bias in the location of maximum cooling is observed for cyclones with low cyclone translation speed. The response on the left side of the track is less and is limited over a shorter distance and dissipates immediately. It is observed that the ocean response, in general, increases with intensity of cyclones. However the differential cooling produced by the same intensity cyclones in AS and in BoB indicates the dominant role of low cyclone translation speed in oceanic response.The surface cooling exhibited strikingly differential responses between AS and BoB. The TMI-SST and buoy observations exhibited significant cooling for a longer duration in AS compared to that of BoB. The spatial extent of cooling is also much higher in AS than that of BoB. The wide spread cooling associated with cyclone passage in AS indicates the dominant role of thermal structure in oceanic response in AS than that of BoB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At intermediate depths of the Arabian Sea, the circulation and characteristics of water are more influenced by the high saline waters from the north and low saline waters from the south of equator. The interaction of these waters which greatly differ in characteristics is less understood compared to that at the upper layers. An understanding of the nature of the intermediate waters is of vital importance not only because of the unusual characteristics of the waters but also due to the influx of the different water masses from the neighbouring Red Sea and Persian Gulf. Hence, in the present investigation, it is proposed to study the water characteristics and current structure of the intermediate waters in the Arabian Sea through the distribution of the water properties on the isanosteric surfaces of 100, 80, 60 and 4O—cl/t, vertical sections, and scatter diagrams An attempt is also made to present the potential vorticity between different steric levels to understand the circulation and mixing processes. Data collected during and subsequent to International Indian Ocean Expedition (IIOE) are used for this study. The thesis has been divided into six chapters with further sub divisions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is divided into six chapters, with Further subdivisions.’ Chapter one has two sections. Section one deals with a general introduction, and section two,with the material and treatment of data For the present investigation. The second chapter concerns with the distribution of oxyty in the oxygen minimum layer and its topography during the southwest and northeast monsoons. The distribution of oxyty at various isanosteric surfaces within which the oxygen minimum layer lies during southwest and northeast monsoons and their topographies Form chapter three. In the fourth chapter the Flow pattern and its influence on the oxygen minimum layer are discussed. The fifth chapter presents the scatter diagrams of oxyty against temperature at the various isanosteric surfaces. The sixth chapter summarises the results of the investigation and presents the conclusions drawn therefrom

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oscillations in the Atmospheric Boundary Layer (ABL) are important because the transport mechanism from the surface to the upper atmosphere is governed by the ABL characteristics. The study was carried out using wind and temperature data observed at surface, 925 hPa and 850 hPa levels over Cochin and the different frequencies embedded in the boundary layer parameters are identified by employing wavelet technique. Surface boundary layer characteristics over the monsoon region are closely linked to the upper layer monsoon features. In this perception it is important to study the various oscillations in the surface boundary layer and the layer above. It is found that the wind and temperature at different levels show oscillations in Quasi Biweekly Mode (QBM) and Intra Seasonal Oscillation (ISO) bands as observed in a typical monsoon system. Amplitude of the oscillation varies with height. The amplitude of the QBM periodicity is more in the surface levels but in the upper levels the amplitude of the ISO periodicity is more than that of the QBM. From this, it is obvious that the controlling mechanism of QBM band is surface parameters such as surface friction and that for ISO band is associated with the active-break cycles of monsoon system