2 resultados para industrial ecosystem
em Cochin University of Science
Resumo:
The present study focuses on the biochemical aspects of six islands belonging to Lakshadweep Archipelago – namely Kavaratti, Kadamath, Kiltan, Androth, Agathy and Minicoy. Lakshadweep, which is an area biologically significant due to isolation from the major coastline, remains as one of the least studied areas in Indian Ocean. The work, processed out the distributional pattern of trace metals among the biotic (corols, sea weeds and sea grass) and abiotic component (sediments) of ecosystem. An effort is made to picturise the spatial distribution pattern of different forms of nitrogen and phosphorus in the various sedimentary environments of the study area. Studies on the biogeochemical and nutrient aspects of the concerned study area scanty. In Lakshadweep, the local life is very dependent on reefs and its resources. The important stress which produce a threatening effort on the existence for coral reefs are anthropogenic-namely-organic and inorganic pollution from sewage, agricultural and industrial waters, sediment damage from excessive land cleaning, and over exploitation particularly through destructive fishing methods. In addition these one other more localized or less service anthropogenic stress: pollution by oil and other hydrocarbons, complex organic molecular and heavy metal pollution, and destructive engineering practices.
Resumo:
Cochin estuary is a shallow brackish water body situated on the south west coast of India. It is a tropical positive estuary extending between 90 40’ and 100 12’ N and 760 10’and 760 30’ E with its northern boundary at Azhikode and southern boundary at Thannermukkom bund.The abundance of benthic fauna in an ecosystem shows the close relationship to its environment and reflects the characteristics of an ecological niche. Seasonal and monthly variations in the distribution of macrobenthos in relation to sediment characteristics were conducted in Cochin estuary from 2009-10 periods. Oxidation-reduction potential showed reducing trends that affected the distribution and diversity of fauna. Seasonal variations in water quality and river discharge pattern affected the faunal composition in the different stations. Sewage mixing was the principal source of organic pollution in the Cochin estuary. The sediment pH was generally on the alkaline side ranging from 4.99 at St.9 and 8.33 at St.1.The Eh ranged from -11mV at St.3 to -625mV at St.2.The temperature varied from 260C to 320C in the estuary. The moisture content ranged from 1.63 to 12.155%, that of organic carbon from 0 09 at St. 6 to 4.29% at St.9 and that of organic matter from 0.16 to 7.39%. Seasonally, the average of Eh was highest during the monsoon (156.22 mV) and in the pre monsoon (140.94 mV). The average pH for the 9 study stations was 7.68 during monsoon period and 7.08 during post monsoon. Based on group wise seasonal analysis, the average mean abundance was maximum for polychaetes (43.47) followed by nematodes (33.62), crustaceans (21.62), molluscs (11.94) and Pisces (0.05) in the estuary. Monsoon season was most favourable for benthic faunal abundance followed by the post monsoon period in the study. The series of human interventions like dredging, discharge of industrial effluents, urbanisation and related aspects had a strong influence on the distribution, abundance of benthic macrofauna in the wetland.