9 resultados para hydroxyl,

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal diffusivity of y-alumina is determined by the photoacoustic method. The method is calibrated by determining the thermal diffusivity of copper and aluminum. The effect of the chemisorbed hydroxyl groups or thermal diffusivity is studied by degassing the sample at different temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the chemisorbed hydroxyl groups on the thermal diffusivity of gama alumina is determined by evaluating the thermal diffusivity at various degassing temperatures and by doping it with rare earth oxide using photoacoustic technique. The thermal diffusivity is found to decrease with the increase in degassing temperature as well as with the increase in the doping concentration of rare earth oxide. This decrease has been attributed to the loss of hydroxyl ion from the y-Al2O3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the photochemical depolymerisation of NR in toluene, in presence of H202 and a homogenizing solvent (Methanol/Tetrahydro— furan) so as to get hydroxyl terminated liquid natural rubber (HTNR) has been carried out. The copolymeri— sation of this product with butane 1,4 diol and toluene 2,4 diisocyanate in presence of a catalyst, dibutyl tin dilaurate, to produce polyurethanes with HTNR soft segments is also reported. The preparation of block copolymers based on poly(ethylene oxide) with varying molecular weights and HTNR are also discussed along with a detailed study on their thermal and mechanical properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared and polarized Raman spectra of Cu(HSeO3) 2 - H20 single crystal have been recorded and analysed. The appearance of non-degenerate Se-OH stretching vibrations in the ~x: and ~y: polarizations of Raman spectra indicate distortion of the HSeO~- ion in the Cu(HSeO3)2 - H20 crystal. The low wavenumber values obtained for the symmetric and asymmetric stretching vibrations of the HSeO 3 ion are consistent with the strong hydrogen bonding and the influence of Jahn-Teller distortion as predicted in X-ray diffraction data. The shifting of the stretching and bending vibrations of the hydroxyl groups and water molecules from the free state values also confirms the strong hydrogen bonding in this crystal. Broad bands observed for both stretching and bending regions become sharp in the Raman spectrum recorded at 77 K. A doublet appears for the Se-OH stretching mode at this temperature indicating the settling of protons in an ordered position and the absence of intrabond proton tunnelling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Block copolymers of unsaturated polyester were prepared by condensation polymerization of hydroxyl or carboxyl terminated liquid rubbers with maleic anhydride, phthalic anhydride, and propylene glycol. The condensate obtained was mixed with styrene monomer to get an unsaturated polyester resin formulation. In this study, copolymers of unsaturated polyesters with hydroxy terminated polybutadiene, carboxy terminated nitrile rubber, and hydroxy terminated natural rubber were prepared. Mechanical properties such as tensile strength, tensile modulus, elongation at break, toughness, impact strength, surface hardness, abrasion resistance, and water absorption were evaluated after the resin was cured in appropriate molds for comparison with the control resin. The fracture toughness and impact resistance of CTBN-modified unsaturated polyester show substantial improvement by this copolymerization without seriously affecting any other property

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.