3 resultados para high electron mobility transistors

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry