4 resultados para high charge

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main challenges in the deposition of cathode materials in thin film form are the reproduction of stoichiometry close to the bulk material and attaining higher rates of deposition and excellent crystallinity at comparatively lower annealing temperatures. There are several methods available to develop stoichiometric thin film cathode materials including pulsed laser deposition; plasma enhanced chemical vapor deposition, electron beam evaporation, electrostatic spray deposition and RF magnetron sputtering. Among them the most versatile method is the sputtering technique, owing to its suitability for micro-fabricating the thin film batteries directly on chips in any shape or size, and on flexible substrates, with good capacity and cycle life. The main drawback of the conventional sputtering technique using RF frequency of 13.56MHz is its lower rate of deposition, compared to other deposition techniques A typical cathode layer for a thin film battery requires a thickness around one micron. To deposit such thick layers using convention RF sputtering, longer time of deposition is required, since the deposition rate is very low, which is typically 10-20 Å/min. This makes the conventional RF sputtering technique a less viable option for mass production in an economical way. There exists a host of theoretical and experimental evidences and results that higher excitation frequency can be efficiently used to deposit good quality films at higher deposition rates with glow discharge plasma. The effect of frequencies higher than the conventional one (13.56MHz) on the RF magnetron sputtering process has not been subjected to detailed investigations. Attempts have been made in the present work, to sputter deposit spinel oxide cathode films, using high frequency RF excitation source. Most importantly, the major challenge faced by the thin film battery based on the LiMn2O4 cathode material is the poor capacity retention during charge discharge cycling. The major causes for the capacity fading reported in LiMn2O4cathode materials are due to, Jahn-Teller distortion, Mn2+ dissolution into the electrolyte and oxygen loss in cathode material during cycling. The work discussed in this thesis is an attempt on overcoming the above said challenges and developing a high capacity thin film cathode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.