9 resultados para habitat and ecology
em Cochin University of Science
Resumo:
This thesis deals with the population characteristics of Artemia and the effect of different environmental parameters on the different stages of Artemia in a salina at Tuticorin, south east coast of India. The present investigation was carried out from 1985 to I987. The study was initiated by undertaking a survey to find out suitable Artemia habitats along the south east coast of India and a perennial salina with an area of 0.25 ha was selected at Karapad (Tuticorin). Weekly samplings were made for two full calender years (1986-87) to collect the different stages of Artemia population as well as the different environmental parameters. The thesis comprises of the following sections: Introduction, materials and methods, systematics, biology and distribution of Artemia, results and discussion, summary and bibliography. The section on results and discussion gives the characteristics of Artemia population in the salina, the seasonal variations of different environmental parameters in the salina and their effects on different stages of Artemia population. Description of an experiment conducted to show the sudden changes of salinity on different stages of Artemia is also given as a separate section.
Resumo:
Members of the order Mysidacea are important component in marine and estuarine plankton inhabiting all regions of the oceans. There are many brackish water species and few species occur in fresh water, some have become adapted to the specialized environments of caves and wells. They are omnivores, responsible for remineralisation of a substantial portion of the detritus in the water column. They form an important link in the food chain (between microbial producers and secondary consumers) and therefore play a major role in the cycling of energy within the aquatic ecosystem. In tropical and subtropical waters, swarms of mysids are exploited commercially and marketed as preserved cooked food. Mysids have been used in fish farming as live feed resource. They are also excellent experimental organism, extremely useful in the studies of potential impact of various pollutants in the aquatic environment. Mysids are also used in wood pulp effluent plants.Considering the significant role of mysids in the productivity of tropical and coastal ecosystems,the present study has been undertaken to extend our knowledge on the systematics, species composition, distribution,abundance and ecology of mysid fauna of the Indian EEZ and adjoining areas. The present study therefore will undoubtedly fumish valuable information on Mysidacea of the Indian waters.
Resumo:
The main objectives of the present investigation were to evaluate the qualitative and quantitative distribution of natural cyanobacterial population and their ecobiological properties along the Cochin estuary and their application in aquaculture systems as a nutritional supplement due to their nutrient-rich biochemical composition and antioxidant potential. This thesis presents a detailed account of the distribution of cyanobacteria in Cochin estuary, an assessment of physico-chemical parameters and the nutrients of the study site, an evaluation of the effect of physico-chemical parameters on cyanobacterial distribution and abundance, isolation, identification and culturing of cyanobacteria, the biochemical composition an productivity of cyanobacteria, and an evaluation of the potential of the selected cyanobacteria as antioxidants against ethanol induced lipid peroxidation. The pH, salinity and nutritional requirements were optimized for low-cost production of the selected cyanobacterial strains. The present study provides an insight into the distribution, abundance, diversity and ecology of cyanobacteria of Cochin estuary. From the results, it is evident that the ecological conditions of Cochin estuary support a rich cyanobacterial growth.
Resumo:
This thesis entitled ecology of chaetognaths in the indian EEZ.The present study, in general, deals with the distribution pattern of mesozooplankton biomass and abundance with special reference to the detailed ecology of the important carnivorous planktonic group, the chaetognath, in the two major ocean basins of the Indian EEZ, the Arabian Sea (AS) and the Bay of Bengal (BoB). Prior to the International Indian Ocean expedition (IIOE, 1960 – 1965), cmprehensive studies on chaetognath in the Indian waters were very limited and was confined mostly to some coastal and oceanic regions. The study revealed a profound influence of different physical process on the abundance of chaetognath community. The significant influence exerted by different physico-chemical factors on the vertical distribution of chaetognath species was also evident. Prior to this study, only very little information was available on the ecology and distribution pattern chaetognaths in both the Arabian sea and the Bay of Bengal in relation to various mesoscale processes and physicochemical .variables. This study, emphasizing the short term and long term influences of different meso-scale and basin scale physical events on the ecology of this important plankton group provides the baseline data for extensive ecological research on any major mesozooplankton group in this tropical low latitude region.
Resumo:
Ecology is the study of systems at a level in which individuals or whole organisms may be considered elements of interaction, either among themselves, or with a loosely organised environmental matrix. Systems at this level are named ecosystems, and ecology, of course, is the biology of ecosystems" (Hargalef, 1968). This thesis includes principally, a study on the ecology of zooplankton of the Cochin backwaters conducted during the years 1971-72. This monsoonal estuarine system is particularly interesting, since it exhibits a wide range of variations in its environmental conditions which is naturally reflected in the fauna also. Several publications on various aspects of its hydrobiology have come out in the recent past. But studies on the zooplankton of the estuary have mostly been discontinuous either in space or time or restricted to its groups
Resumo:
Mechanized fishing started in Indian waters in mid —fifties and large-scale operation of trawl fishing began in the mid sixties by the surfeit of individual entrepreneurs. The southwest coast of India especially the coastal waters of Kerala are the most productive area in the subcontinent and the state has been in the forefront in marine fish production (Kurup, 2001a). Though the coastline of Kerala is one tenth of the coastline of India, the state occupies the foremost position in the marine fish production of the country, accounting for more than 30% of the marine fish landings (Thomas, 2000). The coastal waters of Kerala have rich and diversified fishery resources, which are prone to heavy exploitation by a unprecedently high number of fishing gears, among them, mechanized bottom trawlers with a numerical strength of 4550 (Kurup, 2001a) against the permissible number of 1145 (Kalawar, et al., 1985) are the most destructive. Trawling operations during monsoon periods in Kerala has been a subject of controversy between traditional fishermen and trawl fishers on a subject that trawl fishing destroys large amount of juveniles and young ones of fishes since this period is the major breeding season of most of the fish and prawns (John, 1996). Therefore Government of Kerala imposed a ban on bottom trawling activities from 1988 onwards for a period varying from 21-70 days, which usually commences from June 15th. Though many studies revealed that large amount of non-target groups were destroyed in the commercial trawl fishing in the Indian waters, no concerted study has been conducted so far to evaluate the real impact of bottom trawling on the sea bottom and its living communities. The present study was conducted to assess the impact of excessive bottom trawling exerted on the sea bottom habitat and its living communities, which would be useful in impressing up on the seriousness of habitat degradation and biotic devastation, enabling the concerned to adopt relevant conservation and management steps to conserve the resources for sustainable exploitation
Resumo:
The cumulative effects of global change, including climate change, increased population density and domestic waste disposal, effluent discharges from industrial processes, agriculture and aquaculture will likely continue and increases the process of eutrophication in estuarine environments. Eutrophication is one of the leading causes of degraded water quality, water column hypoxia/anoxia, harmful algal bloom (HAB) and loss of habitat and species diversity in the estuarine environment. The present study attempts to characterize the trophic condition of coastal estuary using a simple tool; trophic index (TRIX) based on a linear combination of the log of four state variables with supplementary index Efficiency Coefficient (Eff. Coeff.) as a discriminating tool. Numerically, the index TRIX is scaled from 0 to10, covering a wide range of trophic conditions from oligotrophic to eutrophic. Study area Kodungallur-Azhikode Estuary (KAE) was comparatively shallow in nature with average depth of 3.6±0.2 m. Dissolve oxygen regime in the water column was ranged from 4.7±1.3 mgL−1 in Station I to 5.9±1.4 mgL−1 in Station IV. The average nitrate-nitrogen (NO3-N) of KAE water was 470 mg m−3; values ranged from Av. 364.4 mg m−3 at Station II to Av. 626.6 mg m−3at Station VII. The mean ammonium-nitrogen (NH4 +-N) varied from 54.1 mg m−3 at Station VII to 101 mg m−3 at Station III. The average Chl-a for the seven stations of KAE was 6.42±3.91 mg m−3. Comparisons over different spatial and temporal scales in the KAE and study observed that, estuary experiencing high productivity by the influence of high degree of eutrophication; an annual average of 6.91 TRIX was noticed in the KAE and seasonal highest was observed during pre monsoon period (7.15) and lowest during post monsoon period (6.51). In the spatial scale station V showed high value 7.37 and comparatively low values in the station VI (6.93) and station VII (6.96) and which indicates eutrophication was predominant in land cover area with comparatively high water residence time. Eff. Coeff. values in the KAE ranges from −2.74 during monsoon period to the lowest of −1.98 in pre monsoon period. Present study revealed that trophic state of the estuary under severe stress and the restriction of autochthonous and allochthonous nutrient loading should be keystone in mitigate from eutrophication process
Resumo:
The distribution of three important dissolved forms of nitrogen, viz. nitrate, nitrite and urea in the surface and bottom water samples collected from 27 selected hydrographic profiles, in the Arabian Sea, along the west coast of India is described. Of the three forms, nitrate concentrations were the highest and comparatively higher concentrations were observed in the bottom water. Decomposition of organic matter resulting in the release of the thermodynamically stable nitrogen species, i.e. nitrate, may be the major factor resulting in higher nitrate concentrations at these depths, where the water is also characterized by low values of dissolved oxygen and temperature. The significant positive correlation between A.O.U. and nitrate of the bottom water samples emphasizes the role of oxidative decomposition of organic matter which plays an active role in reducing the oxygen concentrations below the theoretical values since at this depth ( 200 m) the net production is taken to be zero. This is also evidenced by the negative correlation of nitrate with dissolved oxygen and temperature, for the bottom samples