4 resultados para gonadorelin agonist

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic MI and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10-8-10-5 M) with a maximum stimulation at 10-7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to MI receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study demonstrate the functional alterations of the GABAA and GABAB receptors and the gene expression during the regeneration of pancreas following partial pancreatectomy. The role of these receptors in insulin secretion and pancreatic DNA synthesis using the specific agonists and antagonists also are studied in vitro. The alterations of GABAA and GABAR receptor function and gene expression in the brain stem, crebellum and hypothalamus play an important role in the sympathetic regulation of insulin secretion during pancreatic regeneration. Previous studies have given much information linking functional interaction between GABA and the peripheral nervous system. The involvement of specific receptor subtypes functional regulation during pancreatic regeneration has not given emphasis and research in this area seems to be scarce. We have observed a decreased GABA content, down regulation of GABAA receptors and an up regulation of GABAB receptors in the cerebral cortex, brain stem and hypothalamus. Real Time-PCR analysis confirmed the receptor data in the brain regions. These alterations in the GABAA and GABAB receptors of the brain are suggested to govern the regenerative response and growth regulation of the pancreas through sympathetic innervation. In addition, receptor binding studies and Real Time-PCR analysis revealed that during pancreatic regeneration GABAA receptors were down regulated and GABAB receptors were up regulated in pancreatic islets. This suggests an inhibitory role for GABAA receptors in islet cell proliferation i.e., the down regulation of this receptor facilitates proliferation. Insulin secretion study during 1 hour showed GABA has inhibited the insulin secretion in a dose dependent manner in normal and hyperglycaemic conditions. Bicuculline did not antagonize this effect. GABAA agonist, muscimol inhibited glucose stimulated insulin secretion from pancreatic islets except in the lowest concentration of 1O-9M in presence of 4mM glucose.Musclmol enhanced insulin secretion at 10-7 and 10-4M muscimol in presence of 20mM glucose- 4mM glucose represents normal and 20mM represent hyperglycaemic conditions. GABAB agonist, baclofen also inhibited glucose induced insulin secretion and enhanced at the concentration of 1O-5M at 4mM glucose and at 10-9M baclofen in presence of 20mM glucose. This shows a differential control of the GABAA and GABAB receptors over insulin release from the pancreatic islets. During 24 hours in vitro insulin secretion study it showed that low concentration of GABA has inhibited glucose stimulated insulin secretion from pancreatic islets. Muscimol, the GABAA agonist, inhibited the insulin secretion but, gave an enhanced secretion of insulin in presence of 4mM glucose at 10-7 , 10-5 and 1O-4M muscimol. But in presence of 20mM glucose muscimol significantly inhibited the insulin secretion. GABAB agonist, baclofen also inhibited glucose induced insulin secretion in presence of both 4mM and 20mM glucose. This shows the inhibitory role of GABA and its specific receptor subtypes over insulin synthesis from pancreatic bete-islets. In vitro DNA synthesis studies showed that activation of GABAA receptor by adding muscimol, a specific agonist, inhibited islet DNA synthesis. Also, the addition of baclofen, a specific agonist of GABAB receptor resulted in the stimulation of DNA synthesis.Thus the brain and pancreatic GABAA and GABAB receptor gene expression differentially regulates pancreatic insulin secretion and islet cell proliferation during pancreatic regeneration. This will have immense clinical significance in therapeutic applications in the management of Diabetes mellitus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is to understand the alterations of total Muscarinic and Muscarinic MI receptors in brain and pancreatic islets of Streptozotocin induced diabetic rats. The work focuses on the evaluation of the antihyperglycemic activity of aqueous extracts of Aegle marmelose and Costus pictus leaves in vivo and the changes in the total Muscarinic and Muscarinic MI receptors during diabetes and after the treatment with insulin. The insulin secretory activity of Aegle marmelose and Costus pictus leaf extracts and the effect of cholinergic receptor agonist were investigated in vitro using rat primary pancreatic islet culture. Muscarinic MI receptor kinetics and gene expression during diabetes and regulation of insulin secretion by Aegle marmelose and Costus pie/us leaf extracts will help us to elucidate the role of Muscarinic and Muscarinic MI receptors in hyperglycemia and the regulatory activity of these plant extracts on insulin secretion through Muscarinic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have established a fimctional correlation of serotonergic and adrenergic function in the brain regions with insulin secretion in diabetic rats (Vahabzadeh et al., 1995). Administration of 5-HT”. agonist 8-OH-DPAT to conscious rats caused an increase in blood glucose level. This increase in blood glucose is due to inhibition of insulin secretion by increased circulating EPI (Chaouloff et al., 1990a; Chaouloff et al., 1990d; Chaoulo1T& Jeanrenaud, 1987). The increase in EPI is brought about by increased sympathetic stimulation. This increase can lead to increased sympatho-medullary stimulation thereby inhibiting insulin release (Bauhelal & Mir, 1993, Bauhelal & Mir, 1990a; Chaouloffet al., 1990d). Also, studies have shown that Gi protein in the liver has been decreased in diabetes which will increase gluconeogenesis and glycogenolysis thereby causing hyperglycaemia (Pennington, 1987). Serotonergic control is suggested to exert different effects on insulin secretion according to the activation of different receptor subclasses (Pontiroli et al., 1975). In addition to this mechanism, the secretion of insulin is dependent on the turnover ratio of endogenous 5-hydroxy tryptophan (5-HTP) to 5-HT in the pancreatic islets (Jance er al., 1980). The reports so far stated does not explain the complete mechanism and the subclass of 5-HT receptors whose expression regulate insulin secretion in a diabetic state. Also, there is no report of a direct regulation of insulin secretion by 5-HT from the pancreatic islets even though there are reports stating that the pancreatic islets is a rich source of 5-HT (Bird et al., 1980). Therefore, in the present study the mechanism by which 5-HT and its receptors regulate insulin secretion from pancreatic [3-cells was investigated. Our results led to the following hypotheses by which 5-HT and its receptors regulate the insulin secretion.