2 resultados para glial cells
em Cochin University of Science
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.