11 resultados para gas sensing properties
em Cochin University of Science
Resumo:
One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
In this study, an attempt has been made to find the textural, geochemical, sedimentological characteristics of sediments and water phases of the kayamkulam estuary located in the Southwest coast of Kerala, besides the impact of gas based thermal power plant located at the northern part of the estuary. Estuaries are an important stage in the transport of the solid weathering product of the earth’s crust. These weathered products or sediments are complex mixtures of a number of solid phases that may include clays, silica, organic matter, metal oxides, carbonates, sulfides and a number of minerals. Studies on the aquatic systems revealed the fact that it posses severe ecological impairments due to heavy discharge of sediments from 44 rivers, the continued disposal of pollutants rich materials from industries, sewage channels, agricultural areas and retting yards
Resumo:
The design and fabrication of fiber based ammonia sensors employing Bromothymol blue and Chitosan as sensing elements are presented in this paper. In the presence of ammonia gas the absorption of Bromothymol blue changes while in the case of Chitosan the refractive index changes which in turn modulates the intensity of light propagating through a fiber.
Resumo:
The effect of ambient gas on the dynamics of the plasma generated by laser ablation of a carbon target using 1.06 μm radiation from a Q-switched Nd:YAG laser has been investigated using a spectroscopic technique. The emission characteristics of the carbon plasma produced in argon, helium and air atmospheres are found to depend strongly on the nature and pressure of the surrounding gas. It has been observed that hotter and denser plasmas are formed in an argon atmosphere rather than in helium or air as an ambient.
Resumo:
A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.
Resumo:
This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample
Resumo:
The work reported in this thesis is the preparation, and the structural, electrical and optical properties of reactively evaporated lead sulphide and tin telluride thin films. The three temperature method had been used for the preparation of these semiconductor thin films. In this preparation technique constituent elements are evaporated from separate sources with the substrate kept at a particular temperature. when one of the constituent element is a gas near room temperature, the method is often called reactive evaporation. It has been found for many materials that a stoichiometric interval exists with a limited range of flux and substrate temperature. Usually this technique is used for the preparation of thin films of high melting point compounds or of materials which decompose during evaporation. Tin telluride and lead sulphide are neither high melting point materials nor do they decompose on melting. But even than reactive evaporation offers the possibility of changing the ratios of the flux of the constituent elements within a wide range and studying its effect on the properties of the films
Resumo:
Solid electrolytes for applications like chemical sensing, energy storage, and conversion have been actively investigated and developed since the early sixties. Although of immense potential, solid state protonic conductors have been ignored in comparison with the great interest that has been shown to other ionic conductors like lithium and silver ion conductors. The non-availability of good, stable protonic conductors could be partly the reason for this situation. Although organic solids are better known for their electrical insulating character, ionic conductors of organic origin constitute a recent addition to the class of ionic conductors. However, detailed studies (N1 such conductors are scarce. Also the last decade has witnessed an unprecedented boom in research on organic "conducting polymers". These newly devised materials show conductivity spanning from insulator to metallic regimes, which can be manipulated by appropriate chemical treatment. They find applications in devices ranging from rechargeable batteries to "smart windows". This thesis mainly deals with the synthesis and investigations on the electrical properties of (i) certain organbc protonic conductors derived from ethylenediamine and (ii) substituted polyanilines