12 resultados para forward simulation
em Cochin University of Science
Resumo:
Regional Research Laboratory
Resumo:
This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.
Resumo:
Department of Atmospheric Sciences, Cochin University of Science and Technology
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.
Resumo:
The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.
Resumo:
Routine activity theory introduced by Cohen& Felson in 1979 states that criminal acts are caused due to the presenceof criminals, vic-timsand the absence of guardians in time and place. As the number of collision of these elements in place and time increases, criminal acts will also increase even if the number of criminals or civilians remains the same within the vicinity of a city. Street robbery is a typical example of routine ac-tivity theory and the occurrence of which can be predicted using routine activity theory. Agent-based models allow simulation of diversity among individuals. Therefore agent based simulation of street robbery can be used to visualize how chronological aspects of human activity influence the incidence of street robbery.The conceptual model identifies three classes of people-criminals, civilians and police with certain activity areas for each. Police exist only as agents of formal guardianship. Criminals with a tendency for crime will be in the search for their victims. Civilians without criminal tendencycan be either victims or guardians. In addition to criminal tendency, each civilian in the model has a unique set of characteristicslike wealth, employment status, ability for guardianship etc. These agents are subjected to random walk through a street environment guided by a Q –learning module and the possible outcomes are analyzed
Resumo:
Agent based simulation is a widely developing area in artificial intelligence.The simulation studies are extensively used in different areas of disaster management. This work deals with the study of an agent based evacuation simulation which is being done to handle the various evacuation behaviors.Various emergent behaviors of agents are addressed here. Dynamic grouping behaviors of agents are studied. Collision detection and obstacle avoidances are also incorporated in this approach.Evacuation is studied with single exits and multiple exits and efficiency is measured in terms of evacuation rate, collision rate etc.Net logo is the tool used which helps in the efficient modeling of scenarios in evacuation
Resumo:
This paper presents a cascaded 2-2-2 reconfigurable sigma-delta modulator that can handle GSM, WCDMA and WLAN standards. The modulator makes use of a low-distortion swing suppression topology which is highly suitable for wide band applications. In GSM mode, only the first stage (2nd order Σ-Δ ADC) is turned on to achieve 88dB dynamic range with oversampling ratio of 160 for a bandwidth of 200KHz; in WCDMA mode a 2-2 cascaded structure (4th order) is turned on with 1-bit in the first stage and 2-bit in the second stage to achieve 74 dB dynamic range with oversampling ratio of 16 for a bandwidth of 2MHz and a 2-2-2 cascaded MASH architecture with a 4-bit in the last stage to achieve a dynamic range of 58dB for a bandwidth of 20MHz. The novelty lies in the fact that unused blocks of second and third stages can be switched off taking into considerations like power consumption. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8 supply voltage.
Resumo:
The Paper unfolds the paradox that exists in the tribal community with respect to the development indicators and hence tries to cull out the difference in the standard of living of the tribes in a dichotomous framework, forward and backward. Four variables have been considered for ascertaining the standard of living and socio-economic conditions of the tribes. The data for the study is obtained from a primary survey in the three tribal predominant districts of Wayanad, Idukki and Palakkad. Wayanad was selected for studying six tribal communities (Paniya, Adiya, Kuruma, Kurichya, Urali and Kattunaika), Idukki for two communities (Malayarayan and Muthuvan) and Palakkad for one community (Irula). 500 samples from 9 prominent tribal communities of Kerala have been collected according to multistage proportionate random sample framework. The analysis highlights the disproportionate nature of socio-economic indicators within the tribes in Kerala owing to the failure of governmental schemes and assistances meant for their empowerment. The socio-economic variables, such as education, health, and livelihood have been augmented with SLI based on correlation analysis gives interesting inference for policy options as high educated tribal communities are positively correlated with high SLI and livelihood. Further, each of the SLI variable is decomposed using Correlation and Correspondence analysis for understanding the relative standing of the nine tribal sub communities in the three dimensional framework of high, medium and low SLI levels. Tribes with good education and employment (Malayarayan, Kuruma and Kurichya) have a better living standard and hence they can generally be termed as forward tribes whereas those with a low or poor education, employment and living standard indicators (Paniya, Adiya, Urali, Kattunaika, Muthuvans and Irula) are categorized as backward tribes
Resumo:
When simulation modeling is used for performance improvement studies of complex systems such as transport terminals, domain specific conceptual modeling constructs could be used by modelers to create structured models. A two stage procedure which includes identification of the problem characteristics/cluster - ‘knowledge acquisition’ and identification of standard models for the problem cluster – ‘model abstraction’ was found to be effective in creating structured models when applied to certain logistic terminal systems. In this paper we discuss some methods and examples related the knowledge acquisition and model abstraction stages for the development of three different types of model categories of terminal systems