14 resultados para farm accountancy data network

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Farm communication and extension programs are vital part of the farm development attempts. Electronic media plays a major role in farm extension activities. Kerala, the consumer state, which was a complete agricultural state in pre-independence period, is the sprouting land of agricultural extension and publication activities in print media. Later AIR (All India Radio) farm programs and farm broadcasting of Doordarshan enriched the role of electronic media in farm extension activities. The media saturated southern state of India received this new electronic media farm communication revolution whole heartedly. However, after 1990, Kerala witnessed a flood of private T V channels and currently there are 24 channels in this regional language, named Malayalam. All major news and entertainment channels are broadcasting farm programs. Farm programs of AIR and Doordarshan, broadcasted in Malayalam language, have been well accepted to the farmers‘ in Kerala. However, post-independence period, witnessed the formation of Kerala state in Indian Union and the first ballot-elected communist Government started its administration. After the land reform bills, the state witnessed a gradual decrease in agricultural production. Even if it is not reflected much in the attitude and practices of farm community and farm broadcast of traditional electronic broadcasting, a change is observable after the post-liberalization era of India. Private Television channels, which were focused on entertainment value of programs, started broadcasting farm programs and the parameters of program production went through certain changes. In this situation, there is ample relevance for a study about the farm programs of electronic media in terms of a comparative study of audience perception. The study is limited in the state of Kerala as it is the most media saturated state in India. The study analyzes the rate, nature and scope of adoption of farming methods transmitted through electronic media (T.V. and Radio) in Malayalam language.All kinds of Farm programs including comprehensive program serials, success stories, seasonal cropping methods, experts opinion, been analyzed on the basis of the following objectives.  To find whether propagating new farm methods through farm programs in electronic media or the availability of adequate infrastructure and economic factors make a farmer to adopt a new farming method.  To find which electronic media has more influence on farmers to adopt agricultural programs.  To find which form of electronic media gets better feedback from farmers  To find out whether the programs of T.V. or Radio is more acceptable to farmers than the print media.  To find whether farmers gets the message through their preferred medium for the message. The researcher recorded opinions from a panel of agricultural officers, farm Information officers, agro extension researchers and experts. According to their opinions and guidelines, a pilot study is designed and conducted in Kanjikuzhy Panchayath, in Alappuzha district, Kerala. The Panchayath is selected by considering its ideal nature of being the sample for a social Science research. Besides, the nature of farming in the Panchayath, which devoid of the cultivation of cash crops also supported its sample value. As per the observations from the pilot study, researcher confirmed the Triangulation method as the methodology of research. The questionnaire survey, being the primary part contained 42 Questions with 6 independent and 32 dependent variables. The survey is conducted among 400 respondents in Idukki, Alappuzha and Pathanamthitta districts considering geographical differences and distribution of different types of crops. The response from a total of 360 respondents, 120 from each district, finally selected for tabulation and data analysis.The data analysis, based on percentage analysis, along with the results from focus group discussion among a selected group of 20 farmers, together produced the results as follows. Farmers, who are the audience of farm programs, have a very serious approach towards the medium. They are maintaining a critical point of view towards the content of the programs. Farmers are reasonably aware about the financial side of the programs and the monitory aspirations of both private and Government owned Television channels. Even though, the farmers are not aware on the technical terminology and jargons, they have ideas about success stories, program serials and they are even informed about channels are not maintaining an audience research section like AIR. Though the farmers accept Doordarshan as the credential source of farm information and methods, they are inclined to the entertainment value of programs too. They prefer to have more entertainment value for the programs of Doordarshan. Surprisingly, they have very solid suggestions on even about the shots which add entertainment value to the farm broadcasting methods of Doordarshan. Farmers are very much aware about the fact that media is just an instrument for inspiration and persuasion. They strongly believe that the source of information and new methods is agricultural research and an effective change happens only when there are adequate infrastructure and marketing facilities, along with the proper support from Government agricultural guideline and support systems like Krishi Bhavans. They strongly believe that media alone cannot create any magic in increasing agricultural production. Farmers are pointing out the lack of response to the feedback and queries of farmers on farming methods, as an evidence for the difference in levels of commitment of Government and private owned Television channels.Farmers are still perceiving AIR farm programs are far more committed to farmers and farming than any other electronic medium. However, they are seriously lacking Radio receivers with medium wave reception facility. Farmers perceive that the farming methods on new crops are more adoptable than the farming methods of traditional crops in both private and Government owned Television channels. There are multiple factors behind this observation from farmers. Farmers changed in terms of viewing habits and they prefer success stories, which are totally irrelevant and they even think that such stories encourage people to go for farming and they opined that such stories are good sources of inspiration. However, they are all very much sure about the importance and particular about the presence of entertainment factor even in farm programs. Farmers expect direct interaction of any expert of the new farming method to implement the method in their agriculture practices. Though introduction of a new idea in the T.V. is acceptable, farmers need the direct instruction of expert on field to start implementing the new farming practices Farmers still have an affinity towards print media reports and agricultural pages and they have complaints to print media on the removal of agricultural information pages from news papers. They prefer the reports in print media as it facilitates them to collect and refer articles when they need it. Farmers are having an eye of doubt about the credibility of farm programs by private T.V. channels. Even if they prefer private Television channels for listening and adopting new farming methods and other farm information, they scrutinize programs to know whether they are sponsored programs by agrochemical or agro-fertilizer manufacturer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

there has been much research on analyzing various forms of competing risks data. Nevertheless, there are several occasions in survival studies, where the existing models and methodologies are inadequate for the analysis competing risks data. ldentifiabilty problem and various types of and censoring induce more complications in the analysis of competing risks data than in classical survival analysis. Parametric models are not adequate for the analysis of competing risks data since the assumptions about the underlying lifetime distributions may not hold well. Motivated by this, in the present study. we develop some new inference procedures, which are completely distribution free for the analysis of competing risks data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data caching is an important technique in mobile computing environments for improving data availability and access latencies particularly because these computing environments are characterized by narrow bandwidth wireless links and frequent disconnections. Cache replacement policy plays a vital role to improve the performance in a cached mobile environment, since the amount of data stored in a client cache is small. In this paper we reviewed some of the well known cache replacement policies proposed for mobile data caches. We made a comparison between these policies after classifying them based on the criteria used for evicting documents. In addition, this paper suggests some alternative techniques for cache replacement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs are short non-coding RNAs that can regulate gene expression during various crucial cell processes such as differentiation, proliferation and apoptosis. Changes in expression profiles of miRNA play an important role in the development of many cancers, including CRC. Therefore, the identification of cancer related miRNAs and their target genes are important for cancer biology research. In this paper, we applied TSK-type recurrent neural fuzzy network (TRNFN) to infer miRNA–mRNA association network from paired miRNA, mRNA expression profiles of CRC patients. We demonstrated that the method we proposed achieved good performance in recovering known experimentally verified miRNA–mRNA associations. Moreover, our approach proved successful in identifying 17 validated cancer miRNAs which are directly involved in the CRC related pathways. Targeting such miRNAs may help not only to prevent the recurrence of disease but also to control the growth of advanced metastatic tumors. Our regulatory modules provide valuable insights into the pathogenesis of cancer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Towed Array electronics is a multi-channel simultaneous real time high speed data acquisition system. Since its assembly is highly manpower intensive, the costs of arrays are prohibitive and therefore any attempt to reduce the manufacturing, assembly, testing and maintenance costs is a welcome proposition. The Network Based Towed Array is an innovative concept and its implementation has remarkably simplified the fabrication, assembly and testing and revolutionised the Towed Array scenario. The focus of this paper is to give a good insight into the Reliability aspects of Network Based Towed Array. A case study of the comparison between the conventional array and the network based towed array is also dealt with

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper investigates the feasibility of implementing an intelligent classifier for noise sources in the ocean, with the help of artificial neural networks, using higher order spectral features. Non-linear interactions between the component frequencies of the noise data can give rise to certain phase relations called Quadratic Phase Coupling (QPC), which cannot be characterized by power spectral analysis. However, bispectral analysis, which is a higher order estimation technique, can reveal the presence of such phase couplings and provide a measure to quantify such couplings. A feed forward neural network has been trained and validated with higher order spectral features