11 resultados para excess enthalpy of solution
em Cochin University of Science
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2-, 3- and 4-fluorobenzoic acid from water to salt solution are reported. The data have been rationalized by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model and the internal pressure theory.
Resumo:
Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.
Resumo:
Highly crystalline, ultra fine TiO (anatase) having high surface area has been prepared by thermal hydrolysis of titanyl sulphate 2 solution and characterized using B.E.T surface area measurements, XRD and chemical analysis. The dependence of surface area on concentration of staffing solution, temperature of hydrolysis, duration of boiling and calcination temperature were also studied. As the boiling temperature, duration of boiling and calcination temperature increased, the surface area of TiO formed decreased significantly. 2 On increasing calcination temperature, the crystallite size of TiO also increased and gradually the phase transformation to rutile took 2 place. The onset and completion temperatures of rutilation were 700 and 10008C, respectively
Resumo:
Thermal lens signals in solutions of rhodamine B laser dye in methanol are measured using the dual beam pump-probe technique. The nature of variations of signal strength with concentration is found to be different for 514 and 488 nm Ar + laser excitations. However, both the pump wavelengths produce an oscillatory type variation of thermal lens signal amplitude with the concentration of the dye solution. Probable reasons for this peculiar behaviour (which is absent in the case of fluorescent intensity) are mentioned.
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Resumo:
Pulsed photoacoustic studies in solution of C60 in toluene have been made using the 532 nm radiation from a frequency doubled Nd:YAG laser. Though C60 is found to exhibit the phenomenon of optical limiting, the results on photoacoustic measurements do not give any indication of multiphoton transitions as suggested in some of the earlier works. Results of photoacoustic measurements show that excited state absorption is the dominant process responsible for optical limiting while phenomena like nonlinear scattering may contribute to a lesser extent.
Resumo:
The results of a brief investigation of the amplified spontaneous emission and lasing characteristics of Coumarin 540 dye in as many as ten different solvents are reported. It has been found that C 540 dye solutions contained within a rectangular quartz cuvette give laser emission with well resolved equally spaced modes when pumped with a 476 nm beam. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the high-gain medium. While the quantum yield remains a decisive factor, a clear correlation between the total width of the emission spectra and the refractive indices of the solvents of the respective samples has been demonstrated. The well-resolved mode structure exhibited by the emission spectra gives clear evidence of the lasing action taking place in the gain medium, and the number of modes enables us to compare the gain of the media in different samples. A detailed discussion of the solvent effect in the lasing characteristics of C540 in different solutions is given.
Resumo:
Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.