5 resultados para environmental assessment methods
em Cochin University of Science
Resumo:
This thesis analyzed waste generation and waster disposal problems in municipalities and Cochin Corporation in Ernakulam district.Then the potential of resource recovery and recycling from biodegradable and non bio-degradable waste is established.The study further focused on the need for segregation of waste at the source as biodegradable and non biodegradable solid waste.The potential of resource recovery is explained in detail through the case study.The thesis also highlights the economically viable and environmental friendly methods o f treatment of waste.But the problem is that concerted and earnest attempts are lacking in making use of such methods.In spite of the health problems faced,people living near the dump sites are forced to stay there either because of their weak economic background or family ties.The study did not calculate the economic cost of health problems arising out of unscientific and irresponsible methods of waste disposal.
Resumo:
This study gave the first report on the biennial metal divergence in the sediments of Cochin Estuarine system (CES). Surface sediments from 6 prominent regions of CES were sampled in 2009 and 2011 for the geochemical and environmental assessment of trace metals (Cd, Co, Cr, Cu, Pb Fe, Mg, Mn, Ni and Zn).Besides texture, total organic carbon (TOC) and CHNS were also done. The contamination and risk assessment were performed by determining geochemical indices. Comparison with sediment quality guidelines were done to assess the probability for ecotoxicological threat to the estuary. Results showed that the measured heavy metals had varied spatial distribution patterns, indicating that they had complex origins and controlling factors
Resumo:
This thesis Entitled Environmental impact of Sand Mining :A case Study in the river catchments of vembanad lake southwest india.The entire study is addressed in nine chapters. Chapter l deals with the general introduction about rivers, problems of river sand mining, objectives, location of the study area and scope of the study. A detailed review on river classification, classic concepts in riverine studies, geological work of rivers and channel processes, importance of river ecosystems and its need for management are dealt in Chapter 2. Chapter 3 gives a comprehensive account of the study area - its location, administrative divisions, physiography, soil, geology, land use and living and non-living resources. The various methods adopted in the study are dealt in Chapter 4. Chapter 5 contains river characteristics like drainage, environmental and geologic setting, channel characteristics, river discharge and water quality of the study area. Chapter 6 gives an account of river sand mining (instream and floodplain mining) from the study area. The various environmental problems of river sand mining on the land adjoining the river banks, river channel, water, biotic and social / human environments of the area and data interpretation are presented in Chapter 7. Chapter 8 deals with the Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) of sand mining from the river catchments of Vembanad lake.
Resumo:
In the case of urban centres of the developing countries, corrective measures for the environmental consequences of spontaneous or wrongly planned developments are often prohibitively costly. Hence environmentally planned development alone appears to be the solution for which, a compre-hensive assessment of all the resources is an essential pre—requisite. An under-standing of the prevailing environmental conditions is essential for the effective management and execution of programmes for sustainable development. The present work is a modest attempt at assessing the environmental resources of Cochin, the industrial and business capital of Kerala and a fast developing metropolis.
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.