6 resultados para effective potential
em Cochin University of Science
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
A dynamical system with a damping that is quadratic in velocity is converted into the Hamiltonian format using a nonlinear transformation. Its quantum mechanical behaviour is then analysed by invoking the Gaussian effective potential technique. The method is worked out explicitly for the Duffing oscillator potential.
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Resumo:
Global Positioning System (GPS), with its high integrity, continuous availability and reliability, revolutionized the navigation system based on radio ranging. With four or more GPS satellites in view, a GPS receiver can find its location anywhere over the globe with accuracy of few meters. High accuracy - within centimeters, or even millimeters is achievable by correcting the GPS signal with external augmentation system. The use of satellite for critical application like navigation has become a reality through the development of these augmentation systems (like W AAS, SDCM, and EGNOS, etc.) with a primary objective of providing essential integrity information needed for navigation service in their respective regions. Apart from these, many countries have initiated developing space-based regional augmentation systems like GAGAN and IRNSS of India, MSAS and QZSS of Japan, COMPASS of China, etc. In future, these regional systems will operate simultaneously and emerge as a Global Navigation Satellite System or GNSS to support a broad range of activities in the global navigation sector.Among different types of error sources in the GPS precise positioning, the propagation delay due to the atmospheric refraction is a limiting factor on the achievable accuracy using this system. The WADGPS, aimed for accurate positioning over a large area though broadcasts different errors involved in GPS ranging including ionosphere and troposphere errors, due to the large temporal and spatial variations in different atmospheric parameters especially in lower atmosphere (troposphere), the use of these broadcasted tropospheric corrections are not sufficiently accurate. This necessitated the estimation of tropospheric error based on realistic values of tropospheric refractivity. Presently available methodologies for the estimation of tropospheric delay are mostly based on the atmospheric data and GPS measurements from the mid-latitude regions, where the atmospheric conditions are significantly different from that over the tropics. No such attempts were made over the tropics. In a practical approach when the measured atmospheric parameters are not available analytical models evolved using data from mid-latitudes for this purpose alone can be used. The major drawback of these existing models is that it neglects the seasonal variation of the atmospheric parameters at stations near the equator. At tropics the model underestimates the delay in quite a few occasions. In this context, the present study is afirst and major step towards the development of models for tropospheric delay over the Indian region which is a prime requisite for future space based navigation program (GAGAN and IRNSS). Apart from the models based on the measured surface parameters, a region specific model which does not require any measured atmospheric parameter as input, but depends on latitude and day of the year was developed for the tropical region with emphasis on Indian sector.Large variability of atmospheric water vapor content in short spatial and/or temporal scales makes its measurement rather involved and expensive. A local network of GPS receivers is an effective tool for water vapor remote sensing over the land. This recently developed technique proves to be an effective tool for measuring PW. The potential of using GPS to estimate water vapor in the atmosphere at all-weather condition and with high temporal resolution is attempted. This will be useful for retrieving columnar water vapor from ground based GPS data. A good network of GPS could be a major source of water vapor information for Numerical Weather Prediction models and could act as surrogate to the data gap in microwave remote sensing for water vapor over land.
Resumo:
The deteriorating air quality especially in urban environments is a cause of serious concern. In spite of being an effective sink, the atmosphere also has its own limitations in effectively dispersing the pollutants being dumped into it continuously by various sources, mainly industries. Many a time, it is not the higher emissions that cause alarming level of pollutants but the unfavourable atmospheric conditions under which the atmosphere is not able to disperse them effectively, leading to accumulation of pollutants near the ground. Hence, it is imperative to have an estimate of the atmospheric potential for dispersal of the substances emitted into it. This requires a knowledge of mixing height, ventilation coefficient, wind and stability of the region under study. Mere estimation of such pollution potential is not adequate, unless the probable distribution of concentration of pollutants is known. This can be obtained by means of mathematical models. The pollution potential coupled with the distribution of concentration provides a good basis for initiating steps to mitigate air pollution in any developing urban area. In this thesis, a fast developing industrial city, namely, Trivandrum is chosen for estimating the pollution potential and determining the spatial distribution of sulphur dioxide concentration. Each of the parameters required for pollution potential is discussed in detail separately. The thesis is divided into nine chapters.
Resumo:
The aim of this study is to investigate the role of operational flexibility for effective project management in the construction industry. The specific objectives are to: a) Identify the determinants of operational flexibility potential in construction project management b) Investigate the contribution of each of the determinants to operational flexibility potential in the construction industry c) Investigate on the moderating factors of operational flexibility potential in a construction project environment d) Investigate whether moderated operational flexibility potential mediates the path between predictors and effective construction project management e) Develop and test a conceptual model of achieving operational flexibility for effective project management The purpose of this study is to findout ways to utilize flexibility inorder to manage uncertain project environment and ultimately achieve effective project management. In what configuration these operational flexibility determinants are demanded by construction project environment in order to achieve project success. This research was conducted in three phases, namely: (i) exploratory phase (ii) questionnaire development phase; and (iii) data collection and analysis phase. The study needs firm level analysis and therefore real estate developers who are members of CREDAI, Kerala Chapter were considered. This study provides a framework on the functioning of operational flexibility, offering guidance to researchers and practitioners for discovering means to gain operational flexibility in construction firms. The findings provide an empirical understanding on kinds of resources and capabilities a construction firm must accumulate to respond flexibly to the changing project environment offering practitioners insights into practices that build firms operational flexibility potential. Firms are dealing with complex, continuous changing and uncertain environments due trends of globalization, technical changes and innovations and changes in the customers’ needs and expectations. To cope with the increasingly uncertain and quickly changing environment firms strive for flexibility. To achieve the level of flexibility that adds value to the customers, firms should look to flexibility from a day to day operational perspective. Each dimension of operational flexibility is derived from competences and capabilities. In this thesis only the influence on customer satisfaction and learning exploitation of flexibility dimensions which directly add value in the customers eyes are studied to answer the followingresearch questions: “What is the impact of operational flexibility on customer satisfaction?.” What are the predictors of operational flexibility in construction industry? .These questions can only be answered after answering the questions like “Why do firms need operational flexibility?” and “how can firms achieve operational flexibility?” in the context of the construction industry. The need for construction firms to be flexible, via the effective utilization of organizational resources and capabilities for improved responsiveness, is important because of the increasing rate of changes in the business environment within which they operate. Achieving operational flexibility is also important because it has a significant correlation with a project effectiveness and hence a firm’s turnover. It is essential for academics and practitioners to recognize that the attainment of operational flexibility involves different types namely: (i) Modification (ii) new product development and (iii) demand management requires different configurations of predictors (i.e., resources, capabilities and strategies). Construction firms should consider these relationships and implement appropriate management practices for developing and configuring the right kind of resources, capabilities and strategies towards achieving different operational flexibility types.