6 resultados para dynamic factor models

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we study some dynamic generalized information measures between a true distribution and an observed (weighted) distribution, useful in life length studies. Further, some bounds and inequalities related to these measures are also studied

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the residual Kullback–Leibler discrimination information measure is extended to conditionally specified models. The extension is used to characterize some bivariate distributions. These distributions are also characterized in terms of proportional hazard rate models and weighted distributions. Moreover, we also obtain some bounds for this dynamic discrimination function by using the likelihood ratio order and some preceding results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occupational stress is becoming a major issue in both corporate and social agenda .In industrialized countries, there have been quite dramatic changes in the conditions at work, during the last decade ,caused by economic, social and technical development. As a consequence, the people today at work are exposed to high quantitative and qualitative demands as well as hard competition caused by global economy. A recent report says that ailments due to work related stress is likely to cost India’s exchequer around 72000 crores between 2009 and 2015. Though India is a fast developing country, it is yet to create facilities to mitigate the adverse effects of work stress, more over only little efforts have been made to assess the work related stress.In the absence of well defined standards to assess the work related stress in India, an attempt is made in this direction to develop the factors for the evaluation of work stress. Accordingly, with the help of existing literature and in consultation with the safety experts, seven factors for the evaluation of work stress is developed. An instrument ( Questionnaire) was developed using these seven factors for the evaluation of work stress .The validity , and unidimensionality of the questionnaire was ensured by confirmatory factor analysis. The reliability of the questionnaire was ensured before administration. While analyzing the relation ship between the variables, it is noted that no relationship exists between them, and hence the above factors are treated as independent factors/ variables for the purpose of research .Initially five profit making manufacturing industries, under public sector in the state of Kerala, were selected for the study. The influence of factors responsible for work stress is analyzed in these industries. These industries were classified in to two types, namely chemical and heavy engineering ,based on the product manufactured and work environment and the analysis is further carried out for these two categories.The variation of work stress with different age , designation and experience of the employees are analyzed by means of one-way ANOVA. Further three different type of modelling of work stress, namely factor modelling, structural equation modelling and multinomial logistic regression modelling was done to analyze the association of factors responsible for work stress. All these models are found equally good in predicting the work stress.The present study indicates that work stress exists among the employees in public sector industries in Kerala. Employees belonging to age group 40-45yrs and experience groups 15-20yrs had relatively higher work demand ,low job control, and low support at work. Low job control was noted among lower designation levels, particularly at the worker level in these industries. Hence the instrument developed using the seven factors namely demand, control, manager support, peer support, relationship, role and change can be effectively used for the evaluation of work stress in industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that parallels Shannon’s entropy (see Rao et al. [Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this finding, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi’s entropy, and study its properties.We also examine it in relation to some applied problems such as weighted and equilibrium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing relationships to identify different bivariate lifetime models