6 resultados para discount rate heterogeneity
em Cochin University of Science
Resumo:
Selected grades of low density polyethylene (LDPE) polystyrene (PS) were extruded in a laboratory extruder by varying the feeding rate at different revolutions per minute and temperatures. The mechanical properties of the extruded plastic sheets were determined. LDPE shows a marked variation in mechanical properties with feeding rate while PS shows a marginal change in mechanical properties with feeding rate. However, for both plastics there is a particular feeding rate in the starved region which results in maximum mechanical properties.
Resumo:
Filled and gum compounds of Isobutylene-Isoprene rubber were extruded through a laboratory extruder at various feeding rates, different temperatures and revolutions per minute. The extruded compounds were vulcanized up to their optimum cure times and the mechanical properties of the vulcanizates were determined. The properties suggest that there is a particular feeding rate in the starved fed region, which results in maximum mechanical properties. The study shows that running the extruder at a slightly starved condition is an attractive means of improving the physical properties.
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.