5 resultados para directional modulation

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forward - biased point contact germanium signal diode placed inside a waveguide section along the E -vector is found to introduce significant phase shift of microwave signals . The usefulness of the arrangement as a phase modulator for microwave carriers is demonstrated. While there is a less significant amplitude modulation accompanying phase modulation , the insertion losses are found to be negligible. The observations can be explained on the basis of the capacitance variation of the barrier layer with forward current in the diode

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic dynamics of directly modulated semiconductor lasers have been studied extensively over the last two decades because of their application in secure optical communication. However, chaos is generally suppressed in such systems when the nonlinear gain reduction factor is above 0.01 which is very much smaller than the reported values in semiconductors like InGaAsP. In this paper we show that by giving an optoelectronic feedback with appropriate delay one can increase the range of the values of the gain reduction factor for which chaos can be observed. Numerical studies show that negative feedback is more efficient in producing chaotic dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work which was carried out to Synergic Reactions in the Estuarine Environment leading to Modulation of Aluminium metal during Transport Processes (in Cochin Estuary)Estuaries are considered as sink or source for terrestrial and various anthropogenically generated materials. These include naturally occurring elements Al, Si, Fe or trace inorganics or industrial pollutants of different types. There have been reports on both positive and negative impacts by the introduction of above materials into the ecosystem.This thesis deals with the trace metal Aluminium (Al) whose average concentration (about 8%) in the earths crust is surpassed only by that of Oxygen and Silicon. There can be no doubt that most of the land derived materials reaches the ocean through rivers via estuaries. An important aspect noticed here is that the concentration of dissolved Al is much lower in sea water than in river water.On critically analysing Cochin estuary, for the entire cycles, covering monsoon, postmonsoon and premonsoon, the following salient features are documented as hereunder. Dissolved Al exhibits high and variable trends in Cochin estuary, the influencing parameters being salinity, SPM, pH and dissolved Si. A general profile showed removal in upper/mid estuary followed by regeneration in the mid/lower estuary and further decrease seawards in the southern/northem arms.Distribution appears to be a function of freshwater input, the monsoon season exhibiting very high concentrations throughout the estuary. As the river discharge decreased with the progress of seasons, dissolved Al concentration also decreased, the metal limiting itself to the upper and mid estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development