12 resultados para diffuse solar radiation

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is devoted to the development of a relatively new, rapidly developing quaternary semiconducting material (viz., Cu2ZnSnS4) used for photovoltaic applications. This semiconductor, commonly known as CZTS, is closely related to a family of materials that have been used for solar cell applications. It is a compound semiconductor made of copper, zinc, tin and sulfur, which are sufficiently abundant elements; none of them is harmful to the environment even at large scale usage. Aim of this study is to fabricate CZTS solar cells through chemical spray pyrolysis (CSP) technique. At first the influence of various spray parameters like substrate temperature, spray rate, precursor ratio etc. on the opto-electronic properties of CZTS films will be studied in detail. Then the fabrication of CZTS/In2S3 hetero junctions and various ways to improve the performance parameters will be tried

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study is undertaken with an objective to investigate the linkage between air-sea fluxes in the Indian Ocean and monsoon forcing. Since the monsoon activity is linked to fluxes, the variability of surface marine meteorological fields under the variable monsoon conditions is also studied. The very objective of the present study is to document various sea surface parameters of the Indian Ocean and to examine the anomalies found in them. Hence it is attempted to relate the anomaly to the variability of monsoon over India, highlighting the occasion of contrasting monsoon periods. The analysis of anomalies of surface meteorological fields such as SST, wind speed and direction, sea level pressure and cloud cover for contrasting monsoons are also studied. During good monsoon years, the pressure anomalies are negative indicating a fall in SLP during pre-monsoon and monsoon months. The interaction of the marine atmosphere with tropical Indian Ocean and its influence on ISMR continue to be an area of active research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are only a few attempts in the Indian ocean to evolve reliable climatic models of energy exchange fluxes and to study their inter annul variations. Large space scale and time history of the flux fields could be estimated by the bulk aerodynamic exchange and radiation equation, making use of the climatic normal’s of the related parameters derived from the remarkably good amount of surface marine observations compiled and made available on magnetic tape TDF II by the national climatic centre of NOAA for the period of years 1854 –early 1973. In this thesis the author has made an attempt to calculate the thermal energy exchange fluxes in a meaningful way, using the bulk aerodynamic coefficients which depend on the changes in the wind speed. The spatial and temporal distribution of the exchanges of energy between the ocean and atmosphere , are presented and their impact on the climatic variations of the Indian ocean are discussed from the point of view of predominating air sea interaction processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water quality and primary productivity of Valanthakad backwater (9° 55 10. 24 N latitude and 76° 20 01. 23 E longitude) was monitored from June to November 2007. Significant spatial and temporal variations in temperature, transparency, salinity, pH, dissolved oxygen, sulphides, carbon dioxide, alkalinity, biochemical oxygen demand, phosphatephosphorus, nitrate-nitrogen, nitrite-nitrogen as well as primary productivity could be observed from the study. Transparency was low (53.75 cm to 159 cm) during the active monsoon months when the intensity of solar radiation was minimum, which together with the run off from the land resulted in turbid waters in the study sites. The salinity in both the stations was low (0.10 ‰ to 4.69 ‰) except in August and November 2007. The presence of total sulphide (0.08 mg/ l to 1.84 mg/ l) and higher carbon dioxide (3 mg/ l to 17 mg/ l) could be due to hospital discharges and decaying slaughter house wastes in Station 1 and also from the mangrove vegetation in Station 2. Nitrate-nitrogen and phosphate-phosphorus depicted higher values and pronounced variations in the monsoon season. Maximum net primary production was seen in November (0.87 gC/ m3/ day) and was reported nil in September. The chlorophyll pigments showed higher values in July, August and November with a negative correlation with phosphate-phosphorus and nitrite-nitrogen. The study indicated that the water quality and productivity of Valanthakad backwater is impacted and is the first report from the region

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research in the fields of ceramic pigments is oriented towards the enlargement of the chromatic set of colors together with a replacement for more expensive and less stable organic pigments. Novel non-toxic inorganic pigments have been required to answer environmental laws to remove elements like lead, chromium, cobalt entering in the composition of usual pigments widely used in paints and plastics. Yellow is particularly an important color in the pigment industry and consumption of yellow exceeds that of any other colored pigments. Apart from this, high infrared reflective pigments are now in great demand for usage in coatings, cement pavements, automotives and camouflage applications. They not only impart color to an object, but also reflect the invisible heat from the object to minimize heat build–up, when exposed to solar radiation. With this in view, the present work aims at developing new functional yellow pigments for these applications. A series of IR reflecting yellow pigments have been synthesized and analyzed for their crystalline structure, morphological, composition and optical characteristics, coloring and energy saving applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.