2 resultados para desiccation-sensitivity
em Cochin University of Science
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
Prevalence and antibiotic resistance of Escherichia coli in the water and sediment samples of brackish water aquaculture ponds adjacent to Cochin backwaters was analysed. More than 50% of the water samples and more than 80% of sediment samples from all the sampling stations were tested positive for £. coli. Risk assessment of the E. coli strains was carried out using multiple antibiotic resistance (MAR) indexing. Majority of the strains were found to be multiple antibiotic resistant suggesting their origin from high risk sources of contamination such as human where antibiotics are frequently used. While none of the £. coli strains were resistant against amikacin, chloramphenicol, streptomycin and trimethoprim, considerable levels of resistance was encountered against ampicillin, erythromycin, penicillin G and vancomycin. High prevalence of £. coli in the water and sediment samples of this extensive brackish water ponds indicates high degree of faecal pollution of this environment. The high risk nature of the strains warrants efficient post harvest and processing measures to avoid health risk to consumers