8 resultados para cuivre-zirconium

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron donating properties, surface acidity/ basicity and catalytic activity of cerium - zirconium mixed oxides at various compositions have been reported at an activation temperature of 500 degree C. The catalytic activity for the esterification of acetic acid with n-butanol has heen correlated with electron donating properties and surface acidity/basicity of the oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northern Illinois University DeKalb,Institut fu¨r Anorganische Chemie & Southern Methodist University

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present project was a systematic investigation of the physico-chemical properties and catalytic activity of some transition metal promoted sulphated zirconia systems. The characterisation and catalytic activity results were compared with that of pure Zr02 and simple sulphated zirconia systems. Sulphated zirconia samples were prepared by a controlled impregnation technique. In the case of metal incorporated systems, a single step impregnation was carried out using required amounts of sulphuric acid and metal salt solutions. As a preliminary step, optimisation of calcination temperature and sulphate content was achieved. For further studies, the optimised sulphate loading of 10 ml per gram of hydrous zirconium oxide and a calcination temperature of 700°C was employed. Metal incorporation had a positive influence on the physico-chemical properties. Vapour phase cumene conversion served as a test reaction for acidity. Some industrially important reactions like Friedel-Crafts reaction, phenol hydroxylation, nitration, etc. were selected to test the catalytic activity of the prepared systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface acidity and basicity of binary oxides of Zr with Ce and La are determined using a series of Hammet indicators and Ho,,max values are reported. The generation of new acid sites habe been ascribed to the charge imbalance of M1-O-M2 bonds, where M1 and M2 are metal atoms. Both Bronsted and Lewis acid sites contribute to the acidity of the oxides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are  Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method.  Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications.  The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process.  Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process.  Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays.  The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification.  The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers.  Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs.  In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260  Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions.  For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia.  Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction.  SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials  In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis.  In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR.  In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis.  In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS.  Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261  Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties.  Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol.  Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol.  DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method.  DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.