9 resultados para corticolimbic neurotransmission

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of L-prolyl-cinagta tlheep spyo atenndt idaol paanmti-iPnaer/nkeinusroonleiapnti cp rreocpeeprttoiers b oifn dLi-npgrso.lyPl E-LP-TleIuDcEylS- g2l(y1c)Li n1-a0lem5u-ic1dy1el1-g,(Ply1Lc9iG8n1)a. mw-Taidhsee i nm(vPeeLcstGhiag) anotinesmd n ie onuf rb oaelchetapiovtinico -suuirnbadslu eacrnevddetnarflefetueeacrrtmto a coephfnp ePtrmLe(2icGc0iaa, lob4 mnl0y io atndnhedevl sii8tn r0oto fem dndgosoi ppktyaag mm o-1fii nn tSeehCr/eng cteiwcau tfiracuolenle edpcptattiiioiclcny r r feienoscrp et ohfpinetvos erer ad ebtali.iyncAsdit)cienusdgit ge bin nyai dfrhimacaatli nonsttpilrseytirar aiatdtuttoimeolnn u(a3aso tmfde PidgfL f hkeGargel -o(n'p2tI0ieaPr ali)ldn.y odB ll ay4-b 0icne omldlneugtdc rk eabgdsy t - c1,aa pcSthoaCrmleo)ponfrsaicypil .heP TidLn hteGoe pahnidn esp tior odpoepraimdoinl ew raesc aelpstoo ersx ainm tihnee dst.rPiaLtuGm s,elbeuctt ihvaedly n eon ehfafneccte don t h['eH a]ffsipniirtoyp oefr tidhoel sbpiencdifinicg .b Tinhdei nbge hoafv aigouonraislt an[3dH b] iaopcohmemori-- cal results obtained in the present study raise the possibility that PLG may facilitate nigro-striatal dopaminergic neurotransmission through interacting with a unique PLG receptor functionally coupled to the dopamine receptor cyclase complex. -adenylate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent developments in neurobiology have rendered new prominence and potential to study about the structure and function of brain and related disorders. Human behaviour is the net result of neural control of the communication between brain cells. Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between neurons and/or another cell. It mediates rapid intercellular communication through the nervous system by interacting with cell surface receptors. These receptors often trigger second messenger signaling pathways that regulate the activity of ion channels. The functional balance of different neurotransmitters such as Acetylcholine (Ach), Dopamine (DA), Serotonin (5-HT), Norepinephrine (NE), Epinephrine (EPI), Glutamate and Gamma amino butyric acid (GABA) regulates the growth, division and other vital functions of a normal cell / organism (Sudha, 1998). Any change in neurotransmitters' functional balance will result in the failure of cell function and may lead to the occurrence of diseases. Abnormalities in the production or functioning of neurotransmitters have been implicated in a number of neurological disorders like Schizophrenia, Alzheimer's, Epilepsy, Depression and Parkinson's disease. Changes in central and peripheral neuronal signaling system is also noted in diabetes, cancer, cell proliferation, alcoholism and aging. Elucidation of neurotransmitters receptor interaction pathways and gene expression regulation by second messengers and transcriptional factors in health and disease conditions can lead to new small molecules for development of therapeutic agents to improve neurological disease conditions. Increased awareness of the global effects of neurological disorders should help health care planners and the neurological community set appropriate priorities in research, prevention, and management of these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes Mellitus is a metabolic disorder associated with insulin deficiency, which not.only affects the carbohydrate metabolism but also is associated with various central and peripheral complications. Chronic hyperglycemia during diabetes mellitus is a major initiator of diabetic microvascular complications like retinopathy, neuropathy, The central nervous system (CNS) neurotransmitters play an important role in the regulation of glucose homeostasis. These neurotransmitters mediate rapid intracellular communications not only within the central nervous system but also in the peripheral tissues. They exert their function through receptors present in both neuronal and non neuronal cell surface that trigger second messenger signaling pathways. Dopamine is a neurotransmitter that has been implicated in various central neuronal degenerative disorders like Parkinson's disease and behavioral diseases like Schizophrenia. Dopamine is synthesised from tyrosine, stored in vesicles in axon terminals and released when the neuron is depolarised. Dopamine interacts with specific membrane receptors to produce its effect. Dopamine plays an important role both centrally and peripherally. The recent identification of five dopamine receptor subtypes provides a basis for understanding dopamine's central and peripheral actions . Dopamine receptors are classified into two major groups : DA D1 like and DA D2 like. Dopamine D1 like receptors consists of DA D1 and DA D5 receptors . Dopamine D2 like receptors consists of DA D2, DA D3 and DA D4 receptors. Stimulation of the DA D1 receptor gives rise to increased production of cAMP. Dopamine D2 receptors inhibit cAMP production, but activate the inositol phosphate second messenger system . Impairment of central dopamine neurotransmission causes muscle rigidity, hormonal regulation , thought disorder and cocaine addiction. Peripheral dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium excretion and catecholamine release. The dopamine D2 receptors increased in the corpus striatum and cerebral cortex but decreased in the hypothalamus and brain stem indicating their involvement in regulating insulin secretion. Dopamine D2 receptor which has a stimulatory effecton insulin secretion decreased in the pancreatic islets during diabetes. Our in vitro studies confirmed the stimulatory role of dopamine D2 receptors in stimulation of glucose induced insulin secretion. A detailed study at the molecular level on the mechanisms involved in the role of dopamine in insulin secretion, its functional modification could lead to therapeutic interventions that will have immense clinical importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study deals with the Cholinergic Receptor subtypes functional regulation in spinal cord injured monoplegic rats: Effect of 5-HT GABA and bone marrow cells.Spinal cord injury causes permanent and irrevocable motor deficits and neurodegeneration. Disruption of the spinal cord leads to diminished transmission of descending control from the brain to motor neurons and ascending sensory information. Behavioural studies showed deficits in motor control and coordination in SCI rats. Cholinergic system plays an important role in SCI, the evaluation of which provides valuable insight on the underlying mechanisms of motor deficit that occur during SCI. The cholinergic transmission was studied by assessing the muscarinic and nicotinic receptors; cholinergic enzymes- ChAT and AChE; second messenger enzyme PLC; transcription factor CREB and second messengers - IP3, cAMP and cGMP. We observed a decrease in the cholinergic transmission in the brain and spinal cord of SCI rats. The disrupted cholinergic system is the indicative of motor deficit and neuronal degeneration in the spinal cord and brain regions. SCI mediated oxidative stress and apoptosis leads to neuronal degeneration in SCI rats. The decreased expression of anti oxidant enzymes – SOD, GPx and neuronal cell survival factors - BDNF, GDNF, IGF-1, Akt and cyclin D2 along with increased expression of apoptotic factors – Bax, caspase-8, TNFa and NF-kB augmented the neuronal degeneration in SCI condition. BMC administration in combination with 5-HT and GABA in SCI rats showed a reversal in the impaired cholinergic neurotransmission and reduced the oxidative stress and apoptosis. It also enhanced the expression of cell survival factors in the spinal cord region. In SCI rats treated with 5-HT and GABA, the transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the spinal cord. Neurotrophic factors and anti-apoptotic elements in SCI rats treated with 5-HT and GABA along with BMC rendered neuroprotective effects accompanied by improvement in behavioural deficits. This resulted in a significant reversal of altered cholinergic neurotransmission in SCI. The restorative and neuro protective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to investigate the protective effect of curcumin and vitamin D3 in the functional regulation of glutamatergic NMDA and AMPA receptors in streptozotocin (STZ) induced diabetic rats. Alterations in glutamatergic neurotransmission in the brain were evaluated by analyzing the glutamate content, glutamate receptors - NMDA and AMPA receptors binding parameters and gene expression, GAD and GLAST gene expression. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results of NMDA and AMPA receptors. The role of glutamatergic receptors in pancreas was studied using the following parameters; glutamate content, GLAST expression, glutamate receptors - NMDA and AMPA receptor binding and gene expression. Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of diabetes. In the present study SOD assay and GPx gene expression were done to evaluate the activity of antioxidant enzymes in the brain regions and pancreas. NeuroD1 and Pdx1 gene expression were performed in pancreas of experimental rats to evaluate pancreatic islet survival. Gene expression profiles of caspase 8, Bax, and Akt in brain regions and pancreas were studied to understand the possible mechanism behind curcumin and vitamin D3 mediated neuroprotection and islet survival. Gene expression studies of vitamin D3 receptor localisation in the pancreas was done to understand the mechanism of vitamin D3 in insulin secretion. Curcumin and vitamin D3 mediated insulin secretion via Ca2+ release were studied using confocal microscope.