5 resultados para confidentiality
em Cochin University of Science
Resumo:
Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.
Resumo:
Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.
Resumo:
Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.
Resumo:
n the recent years protection of information in digital form is becoming more important. Image and video encryption has applications in various fields including Internet communications, multimedia systems, medical imaging, Tele-medicine and military communications. During storage as well as in transmission, the multimedia information is being exposed to unauthorized entities unless otherwise adequate security measures are built around the information system. There are many kinds of security threats during the transmission of vital classified information through insecure communication channels. Various encryption schemes are available today to deal with information security issues. Data encryption is widely used to protect sensitive data against the security threat in the form of “attack on confidentiality”. Secure transmission of information through insecure communication channels also requires encryption at the sending side and decryption at the receiving side. Encryption of large text message and image takes time before they can be transmitted, causing considerable delay in successive transmission of information in real-time. In order to minimize the latency, efficient encryption algorithms are needed. An encryption procedure with adequate security and high throughput is sought in multimedia encryption applications. Traditional symmetric key block ciphers like Data Encryption Standard (DES), Advanced Encryption Standard (AES) and Escrowed Encryption Standard (EES) are not efficient when the data size is large. With the availability of fast computing tools and communication networks at relatively lower costs today, these encryption standards appear to be not as fast as one would like. High throughput encryption and decryption are becoming increasingly important in the area of high-speed networking. Fast encryption algorithms are needed in these days for high-speed secure communication of multimedia data. It has been shown that public key algorithms are not a substitute for symmetric-key algorithms. Public key algorithms are slow, whereas symmetric key algorithms generally run much faster. Also, public key systems are vulnerable to chosen plaintext attack. In this research work, a fast symmetric key encryption scheme, entitled “Matrix Array Symmetric Key (MASK) encryption” based on matrix and array manipulations has been conceived and developed. Fast conversion has been achieved with the use of matrix table look-up substitution, array based transposition and circular shift operations that are performed in the algorithm. MASK encryption is a new concept in symmetric key cryptography. It employs matrix and array manipulation technique using secret information and data values. It is a block cipher operated on plain text message (or image) blocks of 128 bits using a secret key of size 128 bits producing cipher text message (or cipher image) blocks of the same size. This cipher has two advantages over traditional ciphers. First, the encryption and decryption procedures are much simpler, and consequently, much faster. Second, the key avalanche effect produced in the ciphertext output is better than that of AES.
Resumo:
The focus of this work is to provide authentication and confidentiality of messages in a swift and cost effective manner to suit the fast growing Internet applications. A nested hash function with lower computational and storage demands is designed with a view to providing authentication as also to encrypt the message as well as the hash code using a fast stream cipher MAJE4 with a variable key size of 128-bit or 256-bit for achieving confidentiality. Both nested Hash function and MAJE4 stream cipher algorithm use primitive computational operators commonly found in microprocessors; this makes the method simple and fast to implement both in hardware and software. Since the memory requirement is less, it can be used for handheld devices for security purposes.