14 resultados para cluster feature
em Cochin University of Science
Resumo:
Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Resumo:
The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora
Resumo:
one of the key sectors, identified by the Department of Industries Government of Kerala, for the cluster development initiative is Handloom, which gives employment to over over 50,000 people directly. Despite its age old tradition and fame, the performance of the sector vis-à-vis power looms is not very rosy owing to (i) competition from cheap power loom cloth from other states (ii) scarcity of quality yarn (iii) price escalation of yarn, dyes, chemicals and other raw materials (iv) the shrinking market for handlooms in Kerala (v) non-demand based production and inadequacy of new designs and (vi) inefficiencies in the system, particularly in the co-operative sector. Cluster based approach is adopted in the handloom sector with the objective of providing necessary support mechanism to come out of the crisis that the sector faces now. While four cluster schemes are being implemented in Kerala, it is under IHDS-CDP that the State got a sizeable number of clusters benefiting a large number of societies and weavers- 24 handloom clusters, bringing 152 handloom co-operative societies and over 19,800 handloom workers under the Programme. This research attempts to revisit the underlying rationale and context of the new direction and would attempt to broadly analyze the growth trends under the influence of cluster model adopted by the State IHDS-CDP for the revival of handloom sector through a detailed study of the handloom co-operative societies in Kerala. If handloom sector in Kerala can be revived using cluster based approach, it can be easily concluded that cluster is capable of taking the MSME in Kerala to a ‘high growth path.’ The study is aimed at understanding how best clusters emerge as appropriate industrial organization suitable for the current global structure of manufacture
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap
Resumo:
Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically
Resumo:
Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification