3 resultados para closed-form solution

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Queueing theory is the mathematical study of ‘queue’ or ‘waiting lines’ where an item from inventory is provided to the customer on completion of service. A typical queueing system consists of a queue and a server. Customers arrive in the system from outside and join the queue in a certain way. The server picks up customers and serves them according to certain service discipline. Customers leave the system immediately after their service is completed. For queueing systems, queue length, waiting time and busy period are of primary interest to applications. The theory permits the derivation and calculation of several performance measures including the average waiting time in the queue or the system, mean queue length, traffic intensity, the expected number waiting or receiving service, mean busy period, distribution of queue length, and the probability of encountering the system in certain states, such as empty, full, having an available server or having to wait a certain time to be served.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The closed form expression for the radiated power of a half-wave microstrip patch is modified to calculate the impedance bandwidth of a printed dipole. Analyses of cavity backed flared and end-loaded printed dipoles are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.