8 resultados para classes de variâncias residuais
em Cochin University of Science
Resumo:
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Resumo:
Two graphs G and H are Turker equivalent if they have the same set of Turker angles. In this paper some Turker equivalent family of graphs are obtained.
Resumo:
In this note,the (t) properties of five class are studied. We proved that the classes of cographs and clique perfect graphs without isolated vertices satisfy the (2) property and the (3) property, but do not satisfy the (t) property for tis greater than equal to 4. The (t) properties of the planar graphs and the perfect graphss are also studied . we obtain a necessary and suffieient conditions for the trestled graph of index K to satisfy the (2) property
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest path between them. In this paper we present betweenness centrality of some important classes of graphs.
Resumo:
For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes
Resumo:
Given a non empty set S of vertices of a graph, the partiality of a vertex with respect to S is the di erence between maximum and minimum of the distances of the vertex to the vertices of S. The vertices with minimum partiality constitute the fair center of the set. Any vertex set which is the fair center of some set of vertices is called a fair set. In this paper we prove that the induced subgraph of any fair set is connected in the case of trees and characterise block graphs as the class of chordal graphs for which the induced subgraph of all fair sets are connected. The fair sets of Kn, Km;n, Kn e, wheel graphs, odd cycles and symmetric even graphs are identi ed. The fair sets of the Cartesian product graphs are also discussed
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved