11 resultados para chemical synthesis
em Cochin University of Science
Resumo:
Catalysis is a technologically important field which determines the quality of life in future. Catalyst research in pharmaceutical industry,fine chemical synthesis and emission control demands supported catalysts in bulk quantities.In the present work it was observed that clay supported catalysts mentioned in various chapters could also be used for the synthesis of similar molecules. The K10Ti catalyst can be used for the synthesis similar substituted imidazole derivatives under solvent free conditions and synthetically important Mannich bases of substrates containing various substitutes.Al-pillared saponite can be used for acetalation of other polyhydroxy compounds like glycerol,mannitol etc.Cu-Pd KSF catalyst has found application in C-C bond forming reactions which can be applied to other reactions and similar methods can be adopted for the synthesis of other catalyst by changing the transition metals. Montmorillonite K10 catalysed synthesis of triarylpyridines can be extended to the synthesis tetrasubstuted pyroles.K10Ti can also be utilized for the synthesis of similar heterocycles.
Resumo:
In this article we present the spectral and nonlinear optical properties of ZnO–TiO2 nanocomposites prepared by colloidal chemical synthesis. Emission peaks of ZnO–TiO2 nanocomposites change from 340 nm to 385 nm almost in proportion to changes in Eg. The nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increase with increasing TiO2 volume fraction at 532 nm and can be attributed to the enhancement of exciton oscillator strength. ZnO–TiO2 is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold
Resumo:
The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
Catalysis is a mature field with extensive practical applications in today's society.indeed,the catalysis of petroleum refining,fine chemical synthesis and emission control demands the production of catalysts in bulk quantities.Future improvement of these well established processes is likely to be incremental.On the other hand,the continuous demand for new products will require additional novel and innovative processes.The need for pollution abatement and prevention also imposes new demands on catalysis, and new processes are periodically advanced for the control of emission of gases as well as for remediation processes such as the cleaning of underground waters. The number of problems where catalysis can have a big impact is constantly growing.In general,science stimulated by the technology has enriched the field of catalysis in a way that has had broad and lasting value.The thesis"Transition metal and rare earth metal modified sol-gel titania: a versatile catalyst for organic transformations" accounts the preparation and characterization studies of both transition metals and rare earth metals modified sol-gel titania and its applications in industrially useful organic reactions.
Resumo:
In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.