7 resultados para bromate-bromide
em Cochin University of Science
Resumo:
Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å, = 90°, = 131.568° and = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands
Resumo:
A red rain phenomenon occurred in Kerala, India starting from 25th July 2001, in which the rainwater appeared coloured in various localized places that are spread over a few hundred kilometers in Kerala. Maximum cases were reported during the first 10 days and isolated cases were found to occur for about 2 months. The striking red colouration of the rainwater was found to be due to the suspension of microscopic red particles having the appearance of biological cells. These particles have no similarity with usual desert dust. An estimated minimum quantity of 50,000 kg of red particles has fallen from the sky through red rain. An analysis of this strange phenomenon further shows that the conventional atmospheric transport processes like dust storms etc. cannot explain this phenomenon. The electron microscopic study of the red particles shows fine cell structure indicat- ing their biological cell like nature. EDAX analysis shows that the major elements present in these cell like particles are carbon and oxygen. Strangely, a test for DNA using Ethidium Bromide dye fluorescence technique indicates absence of DNA in these cells. In the context of a suspected link between a meteor airburst event and the red rain, the possibility for the extraterrestrial origin of these particles from cometary fragments is discussed.
Resumo:
The present work is a base line attempt to investigate and assess the toxicities of three surfactants viz. anionic sodium dodecyl sulfate (SDS), non ionic Triton X-1OO (TX-IOO) and cationic cetyl trimethyl ammonium bromide (CTAB). These compounds represent simple members of the often neglected group of aquatic pollutants i.e. the anionic alkyl sulfates, non ionics and the cationics. These compounds are widely used In plastic industry, pesticide/herbicide formulations, detergents, oil spill dispersants, molluscicides etc. The test organisms selected for the present study are the cyanobacterium Synechocystis salina Wislouch representing a primary producer in the marine environment and a fresh water adapted euryhaline teleost Oreochromis mossambicus (peters) at the consumer level of the ecological pyramid. The fish species, though not indigenous to our country, is now found ubiquitously in fresh water systems and estuaries. Also it is highly resistant to pollutants and has been suggested as an indicator of pollution in tropical region .
Resumo:
A simple and facile strategy for the synthesis of highly substituted imidazoles has been developed by multi-component condensation of 1,2-diketone, aldehyde, amine, and ammonium acetate in presence of tetrabutyl ammonium bromide as catalyst
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 · 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3 − and H2O vibrations. Additional bands obtained in the region of 3 and 1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of 3 modes, since the BrO3 − ion occupies a site of lower symmetry. The appearance 1 mode of BrO3 − anion at a lower wavenumber (771 cm−1) is attributed to the attachment of hydrogen to the BrO3 − anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 · 3H2O structure is confirmed. The lifting of degeneracy of 4 mode indicates that the symmetry of BrO3 − anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77–523 K for various temperatures. A small structural rearrangement takes place in BrO3 − ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3 − ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal
Resumo:
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.