17 resultados para blended

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis an attempt to develop the properties of basic concepts in fuzzy graphs such as fuzzy bridges, fuzzy cutnodes, fuzzy trees and blocks in fuzzy graphs have been made. The notion of complement of a fuzzy graph is modified and some of its properties are studied. Since the notion of complement has just been initiated, several properties of G and G available for crisp graphs can be studied for fuzzy graphs also. Mainly focused on fuzzy trees defined by Rosenfeld in [10] , several other types of fuzzy trees are defined depending on the acyclicity level of a fuzzy graph. It is observed that there are selfcentered fuzzy trees. Some operations on fuzzy graphs and prove that complement of the union two fuzzy graphs is the join of their complements and complement of the join of two fuzzy graphs is union of their complements. The study of fuzzy graphs made in this thesis is far from being complete. The wide ranging applications of graph theory and the interdisciplinary nature of fuzzy set theory, if properly blended together could pave a way for a substantial growth of fuzzy graph theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latex waste like glove waste was effectively modified using a new reclaiming agent, thiocarbanilide. This modified waste was blended with linear low-density polyethylene (LLDPE) to develop a novel thermoplastic elastomer. Both uncrosslinked and dynamically crosslinked blends were prepared and their properties were studied. The results were found to be comparable to those of conventional thermoplastic elastomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene-propylene-diene rubber (EPDM) and isobutylene-isoprene rubber (IIR) were compounded, precured to a low degree, and then were blended with natural rubber (NR). The compounding ingredients for NR were then added and the final curing was done. NR/ EPDM and NR/IIR blends, prepared using this method, were found to possess much improved mechanical properties as compared to their conventional counterparts. The optimum precuring crosslink density that has to be given to the EPDM and IIR phases has been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polychloroprene (neoprene) has been blended with polyvinylchloride (PVC) in different proportions using a new stabiliser system (magnesium oxide and zinc oxide with stearic acid) for PVC. The physical properties of the blends show that they can advantageously replace neoprene in many applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal objective of this study was to explore the compatibility of a blend of two synthetic elastomers viz., ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR). Various commercial grades of EPDM were blended with a specific grade of CIIR at different proportions. The mechanical properties such as tensile strength, tear strength, ageing resistance, etc. were studied. On the basis of the observed physical properties, two particular grades of EPDM were found to be compatible with CIIR. Differential scanning calorimetry and scanning electron microscopy confirmed the results. Chlorosulphonated polyethylene was added as a compatibilizing agent to overcome the phase separation of the other two incompatible grades of EPDM in blending with CIIR. The results revealed that the addition of compatibilizer greatly improves the compatibility and thereby the properties of the blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are a large number of commercial examples and property advantages of immiscible elastomer blends.73 Blends of natural rubber (NR) and polybutadiene (BR) have shown various advantages including heat stability, improved elasticity and abrasion resistance. Ethylene-propylene-diene-rubber (EPDM) blended with styrene-butadiene rubber (SBR) has shown improvements in ozone and chemical resistance with better compression set properties. Blends of EPDM and nitrile rubber (NBR) have been cited as a compromise for obtaining moderate oil and ozone resistance with improved low temperature properties. Neoprene (CR)/BR blends offer improved low temperature properties and abrasion resistance with better processing characteristics etc. However, in many of the commercial two-phase elastomer blends, segregation of the crosslinking agents, carbon black or antioxidants preferentially into one phase can result in failure to attain optimum properties. Soluble and insoluble compounding ingredients are found to be preferentially concentrated in one phase. The balance of optimum curing of both phases therefore presents a difficult problem. It has been the aim of this study to improve the performance of commercially important elastomer blends such as natural rubber (NR)/styrene-butadiene rubber (SBR) and natural rubber/polybutadiene rubber (BR) by industrially viable procedures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline and oligomeric cobalt phthalocyanine are blended in different proportions by chemical methods. These blends are characterised by spectroscopic methods and dielectric measurements. Dielectric studies on the conducting polymer blends are carried out in the frequency range of 100 kHz to 5MHz from room temperature (300 K) to 373 K. Dielectric permittivity and dielectric loss of these blends are explained on the basis of interfacial polarisation. From the dielectric permittivity studies, ac conductivity of the samples were calculated and the results are correlated. In order to understand the exact conduction mechanism of the samples, dc electrical conductivity of the blends is carried out in the temperature range of 70–300 K. By applying Mott’s theory, it is found that the conducting polymer composites obey a 3D variable range hopping mechanism. The values of Mott’s temperature (T0), density of states at the Fermi energy (N(EF)), range of hopping (R) and hopping energy (W) for the composites are calculated and presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPERHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS