6 resultados para bis

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schiff base compounds N,N0-bis[(E)-quinoxalin-2-ylmethylidene] propane-1,3-diamine, C21H18N6, (I), and N,N0-bis[(E)- quinoxalin-2-ylmethylidene]butane-1,4-diamine, C22H20N6, (II), crystallize in the monoclinic crystal system. These molecules have crystallographically imposed symmetry. Compound (I) is located on a crystallographic twofold axis and (II) is located on an inversion centre. The molecular conformations of these crystal structures are stabilized by aromatic pye stacking interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the molecule of the title compound, C20H16N6, the central C—C bond lies on a crystallographic inversion centre. The quinoxalidine ring is nearly planar, with a maximum deviation of 0.021 (2) A ˚ from the mean plane. The crystal structure is stabilized by intermolecular C—H....N interactions, leading to the formation of a layer-like structure, which extends along the a axis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Applied Chemistry,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Mn(II) complexes of bis(thiosemicarbazones) which are represented as [Mn(H2Ac4Ph)Cl2] (1), [Mn(Ac4Ph)H2O] (2), [Mn(H2Ac4Cy)Cl2]·H2O (3), [Mn(H2Ac4Et)Cl2]·3H2O (4) and [Mn(H2Ac4Et)(OAc)2]·3H2O (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes except [Mn(Ac4Ph)H2O], the ligands act as pentadentate neutral molecules and coordinate to Mn(II) ion through two thione sulfur atoms, two azomethine nitrogens and the pyridine nitrogen, suggesting a heptacoordination. While in compound [Mn(Ac4Ph)H2O], the dianionic ligand is coordinated to the metal suggesting six coordination in this case. Magnetic studies indicate the high spin state of Mn(II). Conductivity measurements reveal their non-electrolyte nature. EPR studies indicate five g values for [Mn(Ac4Ph)H2O] showing zero field splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance