1 resultado para biocompatible materials

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 20th century witnessed the extensive use of microwaves in industrial, scientific and medical fields. The major hindrance to many developments in the ISM field is the lack of knowledge about the effect of microwaves on materials used in various applications. The study of the interaction of microwaves with materials demanded the knowledge of the dielectric properties of these materials. However, the dielectric properties of many of these materials are still unknown or less studied. This thesis is an effort to shed light into the dielectric properties of some materials which are used in medical, scientific and industrial fields. Microwave phantoms are those materials used in microwave simulation applications. Effort has been taken to develop and characterize low cost, eco-friendly phantoms from Biomaterials and Bioceramics. The interaction of microwaves with living tissues paved way to the development of materials for electromagnetic shielding. Materials with good conductivity/absorption properties could be used for EMI shielding applications. Conducting polymer materials are developed and characterized in this context. The materials which are developed and analyzed in this thesis are Biomaterials, Bioceramics and Conducting polymers. The use of materials of biological origin in scientific and medical applications provides an eco-friendly pathway. The microwave characterization of the materials were done using cavity material perturbation method. Low cost and ecofriendly biomaterial films were developed from Arrowroot and Chitosan. The developed films could be used in applications such as microwave phantom material, capsule material in pharmaceutical applications, trans-dermal patch material and eco-friendly Band-Aids. Bioceramics with better bioresorption and biocompatibility were synthesized. Bioceramics such as Hydroxyapatite, Beta tricalcium phosphate and Biphasic Calcium Phosphate were studied. The prepared bioceramics could be used as phantom material representing Collagen, Bone marrow, Human abdominal wall fat and Human chest fat. Conducting polymers- based on Polyaniline, are developed and characterized. The developed materials can be used in electromagnetic shielding applications such as in anechoic chambers, transmission cables etc