2 resultados para bio]monitoring

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asha M. R This thesis Entitled Toxicological effects of copper and mercury on the fish macerones gulio (hamiloton – buchanan).Chapter 1. In this chapter, a broad outline of heavy metal uptake, requirement of a suitable bio — monitoring organism, criteria for a standard test fish, and suitability of Macrones gulig for the toxicological study are given. Chapter 2. This chapter deals with the lethal toxicity bioassays to find the 96 hr LC 50 of copper and mercury for the fish Macrones gglig. The experimental results indicated that of the two metals tested, copper was more toxic than mercury.Chapter 3. The effect of copper and mercury on the haemoglobin, haematocrit, erythrocyte count, MCV, MCH and MCHC was studied.Chapter 4. The glycogen and protein contents of liver and muscle after exposure to copper and mercury were studied. There was a significant decrease of glycogen in the liver and muscle of metal treated fishes.Chapter 5. The histopathological changes of the tissues like liver, kidney and gill after exposure to copper and mercury were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.