9 resultados para benguela upwelling

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to study the possible relationship between the process of upwelling and zooplankton biomass in the shelf weters along the south west coast of India between Cape comorin and Ratnagiri based on oceanographic and Zooplankton data collected by the erstwhile FAO/UNDP Pelagic Fishery Project,Cochin between 1973 and 1978. Different factors such as the depth from which the bottom waters are induced upwards during the process of upwelling,the depth to which the bottom waters are drawn, vertical velocity of upwelling and the resultant zooplankton productivity were considered while arriving at the deductions. Except for nutrients and phytoplankton productivity, for which simultaneous data is lacking, all the major factors were taken into consideration before cocluding- xon positive/negative correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increase in sea surface temperature with global warming has an impact on coastal upwelling. Past two decades (1988 to 2007) of satellite observed sea surface temperatures and space borne scatterometer measured winds have provided an insight into the dynamics of coastal upwelling in the southeastern Arabian Sea, in the global warming scenario. These high resolution data products have shown inconsistent variability with a rapid rise in sea surface temperature between 1992 and 1998 and again from 2004 to 2007. The upwelling indices derived from both sea surface temperature and wind have shown that there is an increase in the intensity of upwelling during the period 1998 to 2004 than the previous decade. These indices have been modulated by the extreme climatic events like El–Nino and Indian Ocean Dipole that happened during 1991–92 and 1997–98. A considerable drop in the intensity of upwelling was observed concurrent with these events. Apart from the impact of global warming on the upwelling, the present study also provides an insight into spatial variability of upwelling along the coast. Noticeable fact is that the intensity of offshore Ekman transport off 8oN during the winter monsoon is as high as that during the usual upwelling season in summer monsoon. A drop in the meridional wind speed during the years 2005, 2006 and 2007 has resulted in extreme decrease in upwelling though the zonal wind and the total wind magnitude are a notch higher than the previous years. This decrease in upwelling strength has resulted in reduced productivity too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upwelling regions occupies only a small portion of the global ocean surface. However it accounts for a large fraction of the oceanic primary production as well as fishery. Therefore understanding and quantifying the upwelling is of great importance for the marine resources management. Most of the coastal upwelling zones in the Arabian Sea are wind driven uniform systems. Mesoscale studies along the southwest coast of India have shown high spatial and temporal variability in the forcing mechanism and intensity of upwelling. There exists an equatorward component of wind stress as similar to the most upwelling zones along the eastern oceanic boundaries. Therefore an offshore component of surface Ekman transport is expected throughout the year. But several studies supported with in situ evidences have revealed that the process is purely recurring on seasonal basis. The explanation merely based on local wind forcing alone is not sufficient to support the observations. So, it is assumed that upwelling along the South Eastern Arabian Sea is an effect of basin wide wind forcing rather than local wind forcing. In the present study an integrated approach has been made to understand the process of upwelling of the South Eastern Arabian Sea. The latitudinal and seasonal variations (based on Sea Surface Temperature, wind forcing, Chlorophyll a and primary production), forcing mechanisms (local wind and remote forcing) and the factors influencing the system (Arabian Sea High Saline Water, Bay of Bengal water, runoff, coastal geomorphology) are addressed herewith.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a variety of available satellite data products have been made use of to bring out a synergistic analysis on the upwelling phenomenon in SEAS. Basic concepts of remote sensing, upwelling and linked oceanography topics have been dealt in this work .Auxiliary data products utilized in this study are described in chapter 2. The climatological monthly variability of the upwelling signatures are detailed under chapter 3. Chapter 4 presents the forcing factors that trigger the upwelling process in SEAS. Chapter 5 describes the oceanic response to the forcing factors with respect to the SST cooling and CHLA blooms. Chapter 6 presents the heat budget of the region and the variability of heat budget terms with respect to upwelling. Chapter 7 describes the inter-annual variability of upwelling intensity in SEAS and the influence of climatic events on upwelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the several physical processes occurring in the sea, vertical motions have special significance because of their marked effects on the oceanic environment. upwelling is the process in the sea whereby subsurface layers move up towards the surface. The reverse process of surface water sinking to subsurface depths is called sinking. Upwelling is a very conspicuous feature along the west coasts of continents and equatorial regions, though upwelling also occurs along certain east coasts of continents and other regions, The Thesis is an outcome of some investigations carried out by the author on upwelling and sinking off the west and east coasts of India. The aim of the study is to find out the actual period and duration of upwelling and sinking, their driving mechanism, various associated features and the factors that affect these processes. It is achieved by analysing the temperature and density fields off the west and east coasts of India, and further conclusions are drawn from the divergence field of surface currents, wind stress and sea level variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.