7 resultados para available bandwidth
em Cochin University of Science
Resumo:
The arrow shaped microstrip antenna, which produces dual frequency dual polarisation operation with considera-ble size reduction compared to conventional patches has been reported [I]. These antennas provide greater area reduction and improved gain compared to drum shaped patches [2]. Prediction of the resonance frequency of drum shaped patches [3] and circular patches for broadband operation [4] are available in the literature. In this Letter, we propose empirical formulas for calculating the resonance frequencies of the arrow shaped microstrip antenna. These antennas can be employed for obtaining dual frequency with the same polarisation, bandwidth enhancement, circular polarisation etc. by varying its different parameters or by introducing slots. The proposed design equations provide an easier and simple way of predicting the resonant frequencies of these patches.
Resumo:
A microstrip antenna with large bandwidth is developed using a parasitic technique . Compared to the available wide-baud antennas,the proposed antenna structure is very compact and gives a lessdistorted radiation pattern with frequency . An impedance bandwidth,eight times that of a conventional patch antenna of the same size, Isachieved. The concept of coupled microstrip line model Is extended fortheoretical interpretation of the impedance loci
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
A novel technique fitr the bat dividth enhancement of conventional rectangular microstrip antenna is proposed in this paper. When a high permittivity dielectric resonator of suitable resonant frequency was loaded over the patch. the % bandwidth of the antenna was increased by more than five tunes without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feedline. Experimental study shows a 2:1 VSWR bandwidth of more than 10% and excellent cross polarization performance with increased pass band and radiation coverage abnost the same as that of rectangular microstrip antenna
Resumo:
The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.
Resumo:
In a sigma-delta analog to digital (A/D) As most of the sigma-delta ADC applications require converter, the most computationally intensive block is decimation filters with linear phase characteristics, the decimation filter and its hardware implementation symmetric Finite Impulse Response (FIR) filters are may require millions of transistors. Since these widely used for implementation. But the number of FIR converters are now targeted for a portable application, filter coefficients will be quite large for implementing a a hardware efficient design is an implicit requirement. narrow band decimation filter. Implementing decimation In this effect, this paper presents a computationally filter in several stages reduces the total number of filter efficient polyphase implementation of non-recursive coefficients, and hence reduces the hardware complexity cascaded integrator comb (CIC) decimators for and power consumption [2]. Sigma-Delta Converters (SDCs). The SDCs are The first stage of decimation filter can be operating at high oversampling frequencies and hence implemented very efficiently using a cascade of integrators require large sampling rate conversions. The filtering and comb filters which do not require multiplication or and rate reduction are performed in several stages to coefficient storage. The remaining filtering is performed reduce hardware complexity and power dissipation. either in single stage or in two stages with more complex The CIC filters are widely adopted as the first stage of FIR or infinite impulse response (IIR) filters according to decimation due to its multiplier free structure. In this the requirements. The amount of passband aliasing or research, the performance of polyphase structure is imaging error can be brought within prescribed bounds by compared with the CICs using recursive and increasing the number of stages in the CIC filter. The non-recursive algorithms in terms of power, speed and width of the passband and the frequency characteristics area. This polyphase implementation offers high speed outside the passband are severely limited. So, CIC filters operation and low power consumption. The polyphase are used to make the transition between high and low implementation of 4th order CIC filter with a sampling rates. Conventional filters operating at low decimation factor of '64' and input word length of sampling rate are used to attain the required transition '4-bits' offers about 70% and 37% of power saving bandwidth and stopband attenuation. compared to the corresponding recursive and Several papers are available in literature that deals non-recursive implementations respectively. The same with different implementations of decimation filter polyphase CIC filter can operate about 7 times faster architecture for sigma-delta ADCs. Hogenauer has than the recursive and about 3.7 times faster than the described the design procedures for decimation and non-recursive CIC filters.
Resumo:
Mobile Ad-hoc Networks (MANETS) consists of a collection of mobile nodes without having a central coordination. In MANET, node mobility and dynamic topology play an important role in the performance. MANET provide a solution for network connection at anywhere and at any time. The major features of MANET are quick set up, self organization and self maintenance. Routing is a major challenge in MANET due to it’s dynamic topology and high mobility. Several routing algorithms have been developed for routing. This paper studies the AODV protocol and how AODV is performed under multiple connections in the network. Several issues have been identified. The bandwidth is recognized as the prominent factor reducing the performance of the network. This paper gives an improvement of normal AODV for simultaneous multiple connections under the consideration of bandwidth of node.