6 resultados para autoregressive distributed lag model
em Cochin University of Science
Resumo:
In this paper we try to fit a threshold autoregressive (TAR) model to time series data of monthly coconut oil prices at Cochin market. The procedure proposed by Tsay [7] for fitting the TAR model is briefly presented. The fitted model is compared with a simple autoregressive (AR) model. The results are in favour of TAR process. Thus the monthly coconut oil prices exhibit a type of non-linearity which can be accounted for by a threshold model.
Resumo:
Diagnosis of Hridroga (cardiac disorders) in Ayurveda requires the combination of many different types of data, including personal details, patient symptoms, patient histories, general examination results, Ashtavidha pareeksha results etc. Computer-assisted decision support systems must be able to combine these data types into a seamless system. Intelligent agents, an approach that has been used chiefly in business applications, is used in medical diagnosis in this case. This paper is about a multi-agent system named “Distributed Ayurvedic Diagnosis and Therapy System for Hridroga using Agents” (DADTSHUA). It describes the architecture of the DADTSHUA model .This system is using mobile agents and ontology for passing data through the network. Due to this, transport delay can be minimized. It is a system which will be very helpful for the beginning physicians to eliminate his ambiguity in diagnosis and therapy. The system is implemented using Java Agent DEvelopment framework (JADE), which is a java-complaint mobile agent platform from TILab.
Resumo:
Sharing of information with those in need of it has always been an idealistic goal of networked environments. With the proliferation of computer networks, information is so widely distributed among systems, that it is imperative to have well-organized schemes for retrieval and also discovery. This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron.The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.Most of the distributed systems of the nature of ECRS normally will possess a "fragile architecture" which would make them amenable to collapse, with the occurrence of minor faults. This is resolved with the help of the penta-tier architecture proposed, that contained five different technologies at different tiers of the architecture.The results of experiment conducted and its analysis show that such an architecture would help to maintain different components of the software intact in an impermeable manner from any internal or external faults. The architecture thus evolved needed a mechanism to support information processing and discovery. This necessitated the introduction of the noveI concept of infotrons. Further, when a computing machine has to perform any meaningful extraction of information, it is guided by what is termed an infotron dictionary.The other empirical study was to find out which of the two prominent markup languages namely HTML and XML, is best suited for the incorporation of infotrons. A comparative study of 200 documents in HTML and XML was undertaken. The result was in favor ofXML.The concept of infotron and that of infotron dictionary, which were developed, was applied to implement an Information Discovery System (IDS). IDS is essentially, a system, that starts with the infotron(s) supplied as clue(s), and results in brewing the information required to satisfy the need of the information discoverer by utilizing the documents available at its disposal (as information space). The various components of the system and their interaction follows the penta-tier architectural model and therefore can be considered fault-tolerant. IDS is generic in nature and therefore the characteristics and the specifications were drawn up accordingly. Many subsystems interacted with multiple infotron dictionaries that were maintained in the system.In order to demonstrate the working of the IDS and to discover the information without modification of a typical Library Information System (LIS), an Information Discovery in Library Information System (lDLIS) application was developed. IDLIS is essentially a wrapper for the LIS, which maintains all the databases of the library. The purpose was to demonstrate that the functionality of a legacy system could be enhanced with the augmentation of IDS leading to information discovery service. IDLIS demonstrates IDS in action. IDLIS proves that any legacy system could be augmented with IDS effectively to provide the additional functionality of information discovery service.Possible applications of IDS and scope for further research in the field are covered.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
When variables in time series context are non-negative, such as for volatility, survival time or wave heights, a multiplicative autoregressive model of the type Xt = Xα t−1Vt , 0 ≤ α < 1, t = 1, 2, . . . may give the preferred dependent structure. In this paper, we study the properties of such models and propose methods for parameter estimation. Explicit solutions of the model are obtained in the case of gamma marginal distribution
Resumo:
The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis