19 resultados para asymmetric distributions
em Cochin University of Science
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
The design and implementation of a novel asymmetric coplanar waveguide (ACPW ) band rejection filter using defected ground structure ( DGS) is presented . The proposed ACPW DGS technology provides band gap characteristics with only one cell in the lateral ground plane . The equivalent circuit model of the proposed DGS unit section is described . Measurements of ACPW DGS showed good agreement with simulation and the proposed model
Resumo:
An electromagnetically coupled T-shaped microstrip feed used to enhance the impedance bandwidth of a rectangular microstrip antenna is reported. The proposed antenna offers a 2:1 VSWR bandwidth of -36% with an increase in gain of 0.8 dB
Some Characterization problems associated with the Bivariate Exponential and Geometric Distributions
Resumo:
Antennas are indispensable component of any wireless communication device. An antenna is a transducer between the transmitter and the free space waves and vice versa. They efficiently transfer electromagnetic energy from a transmission line into free space. But the present day communication applications require compact and ultra wide band designs which cannot be catered by simple microstrip based designs. PIFAs have solved the problem to some extend, but the field of antennas needs more innovative designs In this thesis the design and development of compact planner antenna are presented. Emphasis is given to the design of the feed as well as the radiator resulting in simple compact uniplanar geometries. The Asymmetric coplanar feed used to excite the antennas is found to be a suitable choice for feeding compact antennas.The main objectives of the study are the design of compact single, dual and multi band antennas with uniplanar structure and extension of the design for practical GSM/WLAN applications and Ultra compact antennas using the above techniques and extension of the design to antennas for practical applications like RFID/DVB-H. All the above objectives are thoroughly studied. Antennas with ultra compact dimensions are obtained as a result of the study. Simple equations are provided to design antennas with the required characteristics. The design equations are verified by designing different antennas for different applications.
Resumo:
A bivariate semi-Pareto distribution is introduced and characterized using geometric minimization. Autoregressive minification models for bivariate random vectors with bivariate semi-Pareto and bivariate Pareto distributions are also discussed. Multivariate generalizations of the distributions and the processes are briefly indicated.
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
An asymmetric coplanar strip-fed uniplanar antenna for wideband applications is presented. The resulting antenna offers a 2:1 VSWR bandwidth greater than 100% from 1.58 to 5.48 GHz covering the DCS/PCS/IEEE 802.11a/WiMAX bands. The antenna has an overall dimension of 44 × 35 mm2 when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The design equation is also presented in this article. The antenna exhibits good radiation characteristics and moderate gain in the entire operating band.
Resumo:
The present study gave emphasis on characterizing continuous probability distributions and its weighted versions in univariate set up. Therefore a possible work in this direction is to study the properties of weighted distributions for truncated random variables in discrete set up. The problem of extending the measures into higher dimensions as well as its weighted versions is yet to be examined. As the present study focused attention to length-biased models, the problem of studying the properties of weighted models with various other weight functions and their functional relationships is yet to be examined.
Resumo:
The present work is organized into six chapters. Bivariate extension of Burr system is the subject matter of Chapter II. The author proposes to introduce a general structure for the family in two dimensions and present some properties of such a system. Also in Chapter II some new distributions, which are bivariate extension of univariate distributions in Burr (1942) is presented.. In Chapter III, concentrates on characterization problems of different forms of bivariate Burr system. A detailed study of the distributional properties of each member of the Burr system has not been undertaken in literature. With this aim in mind in Chapter IV is discussed with two forms of bivariate Burr III distribution. In Chapter V the author Considers the type XII, type II and type IX distributions. Present work concludes with Chapter VI by pointing out the multivariate extension for Burr system. Also in this chapter the concept of multivariate reversed hazard rates as scalar and vector quantity is introduced.
Some characterization problems associated with the bivariate exponential and geometric distributions
Resumo:
It is highly desirable that any multivariate distribution possessescharacteristic properties that are generalisation in some sense of the corresponding results in the univariate case. Therefore it is of interest to examine whether a multivariate distribution can admit such characterizations. In the exponential context, the question to be answered is, in what meaning— ful way can one extend the unique properties in the univariate case in a bivariate set up? Since the lack of memory property is the best studied and most useful property of the exponential law, our first endeavour in the present thesis, is to suitably extend this property and its equivalent forms so as to characterize the Gumbel's bivariate exponential distribution. Though there are many forms of bivariate exponential distributions, a matching interest has not been shown in developing corresponding discrete versions in the form of bivariate geometric distributions. Accordingly, attempt is also made to introduce the geometric version of the Gumbel distribution and examine several of its characteristic properties. A major area where exponential models are successfully applied being reliability theory, we also look into the role of these bivariate laws in that context. The present thesis is organised into five Chapters
Resumo:
In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them
Resumo:
In this article we introduce some structural relationships between weighted and original variables in the context of maintainability function and reversed repair rate. Furthermore, we prove some characterization theorems for specific models such as power, exponential, Pareto II, beta, and Pearson system of distributions using the relationships between the original and weighted random variables