3 resultados para arachidonic acid metabolism inhibitors

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pvridoxine deficiency causes physiologically significant decrease in brain serotonin (5-HT) due to decreased decarboxylation of 5- hvdroxvtrvptophan (5-HTP). We have examined the effect of pyridoxine deficiency on indoleamine metabolism in the pineal gland, a tissue with high indoleamine turnover. Adult male Sprague-Dawley rats were fed either a pyridoxine-supplemented or pyridoxinedeficient diet for 8 weeks. Pyridoxine deficiency did not alter the pattern of circadian rhythm of pineal 5-HT. 5-hvdroxvindoleacetic acid (5-HIAA), V-acetvlserotonin (NAS). and melatonin. However the levels of these compounds were significantly lower in the pineal glands of pyridoxine-deficient animals. Pineal 5-HTP levels were consistently higher in the pyridoxine-deficient animals and a conspicuous increase was noticed at 22.00 h. Increase in pineal NAS and melatonin levels caused by isoproterenol (5 mg kg at 17.00 h) were significantly lower (P < 0.05) in the pyridoxine-deficient animals. Treatment of pyridoxine-deficient rats with pvridoxine restored the levels of pineal 5-HT, 5-HIAA. NAS. and melatonin to values seen in pyridoxine-supplemented control animals. These results suggest that 5-HT availability could be an important factor in the regulation of the synthesis of pineal NAS and melatonin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study is an attempt to find a means of lowering oxalate concentration in individuals susceptible to recurrent calcium oxalate stone disease.The formation of renal stone composed of calcium oxalate is a complex process that remains poorly understood and treatment of idiopathic recurrent stone formers is quite difficult and this area has attracted lots of research workers. The main objective of this work are to study the effect of certain mono and dicarboxylic acids on calcium oxalate crystal growth in vitro, isolation and characterization of oxalate degrading bacteria, study the biochemical effect of sodium glycollate and dicarboxylic acids on oxalate metabolism in experimental stone forming rats and To investigate the effect of dicarboxylic acids on oxalate metabolism in experimental hyperoxaluric rats. Oxalic acid is one of the most highly oxidized organic compound widely distributed in the diets of man and animals, and ingestion of plants that contain high concentration of oxalate may lead to intoxication. Excessive ingestion of dietary oxalate may lead to hyperoxaluria and calcium oxalate stone disease.The formation of calcium oxalate stone in the urine is dependent on the saturation level of both calcium and oxalate. Thus the management of one or both of these ions in individuals susceptible to urolithiasis appears to be important. The control of endogenous oxalate synthesis from its precursors in hyperoxaluric situation is likely to yield beneficial results and can be a useful approach in the medical management of urinary stones. A variety of compounds have been investigated to curtain endogenous oxalate synthesis which is a crucial factor, most of these compounds have not proved to be effective in the in vivo situation and some of them are not free from the toxic effect. The non-operative management of stone disease has been practiced in ancient India in the three famous indigenous systems of medicine, Ayurveda, Unani and Siddha, and proved to be effective.However the efficiency of most of these substances is still questionable and demands further study. Man as well as other mammals cannot metabolize oxalic acid. Excessive ingestion of oxalic acid can arise from oxalate rich food and from its major metabolic precursors, glycollate, glyoxylate and ascorbic acid can lead to an acute oxalate toxicity. Increasedlevels of circulating oxalate, which can result in a variety of diseases including renal failure and oxalate lithiasis. The ability to enzymatically degrade oxalate to less noxious Isubstances, formate and CO2, could benefit a great number of individuals including those afflicted with hyperoxaluria and calcium oxalate stone disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability