15 resultados para aquaculture production
em Cochin University of Science
Resumo:
The world demand for fish and fishery products is increasing steadily and it is generally accepted that it will not be possible to meet the heavy demand with resources exploited from capture fishery alone. Now aquaculture is well established and fastdeveloping industry in many countries and is a major focus sector for development. During recent decades, aquaculture has gained momentum, throughout the world especially in developing countries. According to Food and Agricultural Oganisation (FAO, 2000), global aquaculture production was 26.38 tones in 1996 have reached 32.9 million tonnes during 1999. Only marine aquaculture sector has contributed 13.1 million tonnes during 1999.India is a major fish producing country. About one half of lndia’s brackish water lands are currently being utilized for farming in order to reduce the gap between supply and demand for fish. Aquaculture has become a major source of livelihood for people and its role in integrated rural development, generation of employment and earning foreign exchange, thereby alleviating poverty is being greatly appreciated around the world.Among the infectious agents, bacteria are becoming the prime causal organisms for diseases in food fishes and other marine animals. Sindermann, (1970) reported that bacterial fish pathogen most commonly found among marine fishes is species of Pseudomonas, Vibrio and Mycobacterium. These can be categorized into primary pathogens; secondary invaders that may cause systemic disease in immunocompromised hosts; and normal marine flora which are not pathogenic but may occur on body surfaces or even within the tissues of the host. I-Iigh density of animals in hatchery tanks and ponds is conducive to the spread of pathogen and the aquatic environment with regular application of protein rich feed, is ideal for culturing bacteria. Bacteria, which are normally present in seawater or on the surface of fish, can invade and cause pathological effects in fishes, which are injured or subjected to other environmental stresses.Mycobacteria except parasites are known as nontuberculosis mycobacteria (NTM), atypical mycobacteria or mycobacteria other than tuberculosis(MO'l'l"). This group of mycobacteria includes opportunistic pathogens and saprophytes. Environmental mycobacteria are ubiquitous in distribution and the sources may include soil, water, warm-blooded as well as cold-blooded animals. Disease caused by environmental mycobacterial strains in susceptible humans (Goslee & Wolinsky, 1976; Grange, 1987), animals and fishes are increasingly attracting attention. Greatest importance of environmental mycobacteria is believed to be their role in immunological priming of humans and animals, thereby modifying their immune responses to subsequent exposure to pathogenic species.
Resumo:
Aquaculture has developed to become one of the fastest growing food producing sectors in the world.Today India is one among the major shrimp producing countries in the world.There are extensive and intensive shrimp culture practices. In extensive shrimp culture, shrimps are stocked at low densities (< 25 PLs m'2)in large ponds or tidal enclosures in which little or no management is exercised or possible. Farmers depend almost entirely on natural conditions in extensive cultures. Intensive shrimp culture is carried out in high densities (>200 PLs m'2). Much of the world shrimp production still comes from extensive culture.There is a growing demand for fish and marine products for human and animal consumption. This demand has led to rapid growth of aquaculture, which some times has been accompanied by ecological impacts and economic loss due to diseases. The expansion of shrimp culture always accompanies local environmental degradation and occurrence of diseases.Disease out breaks is recognised as a significant constraint to aquaculture production. Environmental factors, water quality, pollution due to effluent discharge and pathogenic invasion due to vertical and horizontal transmission are the main causes of shrimp disease out breaks. Nutritional imbalance, toxicant and other pollutants also account for the onset of diseases. pathogens include viruses, bacteria, fungi and parasites.Viruses are the most economically significant pathogens of the cultured shrimps world wide. Disease control in shrimp aquaculture should focus first on preventive measures for eliminating disease promoting factors.ln order to design prophylactic and proactive measures against shrimp diseases, it is mandatory to understand the immune make up of the cultivable species, its optimum culture conditions and the physico chemical parameters of the rearing environment. It has been proven beyond doubt that disease is an end result of complex interaction of environment, pathogen and the host animal. The aquatic environment is abounded with infectious microbes.The transmission of disease in this environment is extremely easy, especially under dense, culture conditions. Therefore, a better understanding of the immune responses of the cultured animal in relation to its environmental alterations and microbial invasions is essential indevising strategic measures against aquaculture loss due to diseases. This study accentuate the importance of proper and regular health monitoring in shrimps employing the most appropriate haematological biomarkers for application of suitable prophylactic measures in order to avoid serious health hazards in shrimp culture systems.
Resumo:
This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.
Resumo:
The overall focus of the thesis involves the systematics,germplasm evaluation and pattern of distribution and abundance of freshwater fishes of kerala (india).Biodiversity is the measure of variety of Life.With the signing on the convention on biodiversity, the countries become privileged with absolute rights and responsibility to conserve and utilize their diverse resources for the betterment of mankind in a sustainable way. South-east Asia along with Africa and South America were considered to be the most biodiversity rich areas in the world .The tremendous potential associated with the sustainable utilization of fish germplasm resources of various river systems of Kerala for food, aquaculture and ornamental purposes have to be fully tapped for economic upliftment of fisherman community and also for equitable sharing of benefits among the mankind without compromising the conservation of the rare and unique fish germplasm resources for the future generations.The study was carried during April 2000 to December 2004. 25 major river systems of Kerala were surveyed for fish fauna for delineating the pattern of distribution and abundance of fishes both seasonally and geographically.The results of germplasm inventory and evaluation of fish species were presented both for the state and also river wise. The results of evaluation of fish species for their commercial utilization revealed that, of the 145, 76 are ornamental, 47 food and 22 cultivable. 21 species are strictly endemic to Kerala rivers. The revalidation on biodiversity status of the fishes assessed based on IUCN is so alarming that a high percentage of fishes (59spp.) belong to threatened category which is inclusive of 8 critically ndangered (CR), 36 endangered and 15 species under vulnerable (VU) category.The river wise fish germplasm inventory surveys were conducted in 25 major river systems of Kerala.The results of the present study is indicative of existence of several new fish species in the streams and rivulets located in remote areas of the forests and therefore, new exclusive surveys are required to surface fish species new to science, new distributional records etc, for the river systems.The results of fish germplasm evaluation revealed that there exist many potential endemic ornamental and cultivable fishes in Kerala. It is found imperative to utilize these species sustainably for improving the aquaculture production and aquarium trade of the country which would definitely fetch more income and generate employment.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
A general introduction to the problems faced in the shrimp culture due to waste formation and its consequent environmental hazards and production problems of Giant tiger shrimp, Penaeus monodon is highlighted by the author in this thesis. The objective of the present work was to assess the potential of brackish water finfish to improve bottom soil conditions and thereby increase the growth and production of Penaeus monodon. The salient findings of the present study are summarized in chapter 7. This is followed by the references cited in the thesis and list ofpublications originated from the present study.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics
Resumo:
A marine isolate of jáÅêçÅçÅÅìë MCCB 104 has been identified as an aquaculture probiotic antagonistic to sáÄêáç. In the present study different carbon and nitrogen sources and growth factors in a mineral base medium were optimized for enhanced biomass production and antagonistic activity against the target pathogen, sáÄêáç=Ü~êîÉóá, following response surface methodology (RSM). Accordingly the minimum and maximum limits of the selected variables were determined and a set of fifty experiments programmed employing central composite design (CCD) of RSM for the final optimization. The response surface plots of biomass showed similar pattern with that of antagonistic activity, which indicated a strong correlation between the biomass and antagonism. The optimum concentration of the carbon sources, nitrogen sources, and growth factors for both biomass and antagonistic activity were glucose (17.4 g/L), lactose (17 g/L), sodium chloride (16.9 g/L), ammonium chloride (3.3 g/L), and mineral salts solution (18.3 mL/L). © KSBB
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.
Resumo:
Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
The thesis entitled "Studies on improved practices of prawn farming for higher production in central Kerala" prepared by the author describes various practices prevailing in the study area in order to elucidate their relative merits. The study on semi-intensive farming at Mundapuram, Kannur was also carried out and included in the thesis for comparison.The author felt it important to make a critical study of the existing culture practices in the central Kerala, a region where it has been existing since time immemorial.Careful analysis of data accrued by the author has helped him to identify strength, weakness, opportunities and threats confronting the shrimp farming. As a result it was possible to evolve an appropriate management technology taking into consideration the various ecological (location specific), social and economical conditions prevalent in the vast study area.
Resumo:
Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.
Resumo:
Existing method of culture were largely based on empirical knowledge. Lacking a scientific basis as such methods did, they were often wasteful and suffered severe limitation. Modern methods of fish and prawn culture based on scientific research, have revolutioned the industry in recent years and not only extended its scope to cover the whole country but led to increased fish and prawn production. An understanding of the biological capability of the water in the perennial and seasonal culture ponds, and the nature and extent of the influence of the abiotic factors on the production of organisms in the primary level of food chain would contribute to effectively implement management measures in the stocking strategies and in the evaluation of economics of production of prawns. It is against this background that the present topic of investigation "Studies on the ecology and production of algae in prawn culture systems” was selected.
Resumo:
The principal interest of the present investigation was to determine seasonal and vertical variation of chemoorganotrophic utilisation of glucose and sodium—acetate by the natural bacterial population in the aquaculture pond of Narakkal, Cochin using techniques which allow maintenance of the in situ gaseous concentrations during incubation. In addition salinity, dissolved oxygen, temperature, hydrogen—ion—.concentration, primary production, plant pigments and total bacterial concentration were determined seasonally and vertically because of their possible relationship to chemoorganotrophy.