2 resultados para approval for medical research

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhancement and culture of bivalves presents an opportunity to maximise and even increase production of many growing areas. Clam culture is less intensive both for capital and labour, involves simple farming and management techniques and is considered an efficient means of protein production. Clams are efficient converters of primary production and growth rate is fast with maximum production in 5-6 months. with culture, production is less influenced by poor recruitment. Stable production facilitates market development. Rivalves are being increasingly used in bio-medical research. Culture practices would ensure uninterrupted supplies of experimental material. Paucity of biological data restricts the development of efficient management and culture techniques of bivalves. This study was undertaken with a view to provide information on some aspects of biology of the bivalve S_. scripta which have hitherto been uninvestigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms