27 resultados para antimicrobial agent
em Cochin University of Science
Resumo:
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre-rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (V,) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber-fibre interactions.
Resumo:
A series of short-isora-fiber-reinforced natural rubber composites were prepared by the incorporation of fibers of different lengths (6, 10, and 14 mm) at 15 phr loading and at different concentrations (10, 20, 30, and 40 phr) with a 10 mm fiber length. Mixes were also prepared with 10 mm long fibers treated with a 5% NaOH solution. The vulcanization parameters, processability, and stress-strain properties of these composites were analyzed. Properties such as tensile strength, tear strength, and tensile modulus were found to be at maximum for composites containing longitudinally oriented fibers 10 mm in length. Mixes containing fiber loadings of 30 phr with bonding agent (resorcinol-formaldehyde [RF] resin) showed mechanical properties superior to all other composites. Scanning electron microscopy (SEM) studies were carried out to investigate the fiber surface morphology, fiber pullout, and fiber-rubber interface. SEM studies showed that the bonding between the fiber and rubber was improved with treated fibers and with the use of bonding agent.
Resumo:
Tribasic lead sulphate is tried as a practical curing agent for polychloroprene. The cure characteristics of the compounds as well as the technical properties of the vulcanizates show that it can act as a potential curative.
Resumo:
Blends of nitrile rubber and reclaimed rubber containing different levels of a coupling agent, Si 69 (bis(3- triethoxysilyl propyl)(tetrasulphide) were prepared and the cure characteristic's and mechanical properties were studied. Optimum loading of Si-69 was found to be a function of blend ratio. 3 phi- of Si 69 in a 70:30. Blend was found to be the optimum combination with respect to the mechanical properties. The rate and state of cure were also affected bv the conp/ing agent. Tensile strength, tear strength and abrasion resistance were improved in the presence of coupling agent. While the state of cure improved, the cure rate and scorch time decreased with increasing silane content. Ageing studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
The rheological characteristics of short Nylon-6 fiber-reinforced Styrene Butadiene rubber (SBR) in the presence of epoxy resin-based bonding agent were studied with respect to the effect of shear rate, fiber concentration , and temperature on shear viscosity and die swell using a capillary rheonzeter. All the composites containing bonding agent showed a pseudoplastic nature, which decreased with increasing temperature. Shear viscosity was increased in the presence of fibers. The temperature sensitivity of the SBR matrices was reduced on introduction of fibers. The temperature sensitivity of the melts was found to be lower at higher shear rates. Die swell was reduced in the presence of fibers. Relative viscosity of the composites increased with shear rate. In the presence of epoxy resin bonding agent the temperature sensitivity of the mixes increased. Die swell was larger in the presence of bonding agent.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.
Resumo:
Department of Applied chemistry, Cochin University of Science and Technology
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
The constitutive production of AMPs in shrimps ensures that animals are able to protect themselves from low-level assaults by pathogens present in the environment. As these molecules play important roles in the shrimp immune defense system, the expression level of these AMPs are possible indicators of the immune state of shrimps. The present study also indicates the antiviral property of AMPs, especially ALF, stressing the importance of their up-regulation through the application of immunostimulants/probiotics as a prophylactic strategy in aquaculture. The present study shows that shrimp defense system is equipped enough to evade WSSV infection to a certain extent, when the animals were maintained on marine yeast and probiotic diet, whereas the control diet fed group succumbed to WSSV infection. This study reveals that marine yeast and probiotic supplemented diet can delay the process of WSSV infection and confer greater protection to the animals. Particularly, the protection conferred by marine yeast, C. haemulonii S27 and Bacillus MCCB101 were highly promising imparting greater hope to the aquaculture community to overcome the prevailing disease problems in aquaculture. It may be inferred from the present study that up-regulation of AMP genes could be effected by the application of immunostimulants and probiotics. Also, AMP expression profile could be used as an effective tool for screening immunostimulants and probiotics for application in shrimp culture. Ultimately, it is likely that no single compound or strategy will provide a solution to the problem of disease within aquaculture and that, in reality, a suite of techniques will be required including the manipulation of the rearing environment, addition of probionts as a matter of routine during culture, and the use of immunostimulants and other supplements during vulnerable growth phases. Finally, the development of good management practices, the control of environmental variables, genetic improvement in the penaeid species, understanding of host-virus interaction, modulation of the shrimp immune system, supported by functional genomics and proteomics of this crustacean, as a whole suggests that the control of WSSV is not far.
Resumo:
This thesis Entitled Marine actinomycetes as source of antimicrobial compounds and as probiotics and single cell protein for application in penaeid peawn culture systems. Ocean harbours more than 80% of all life on earth and remains our greatest untapped natural resource. The study revealed the potential of marine actinomycetes as a source of antimicrobial compounds. The selected streptomycetes were found to be capable of inhibiting most of the pathogenic vibrios, whichis a major problem both in hatcheries and grow out systems. The bioactive principle can be incorporated with commercial feeds and applied as medicated diet for the control of vibrios in culture systems.The hydrolytic potential inhibitory property against pathogens and non—pathogenicity to penaeid prawns make the selected Streptomycesspp.an effective probioic in aquaculture. Since there is considerably less inhibition to the natural in pond ecosystem the microbial diversityis being maintained and thereby the water quality. Actinomycetes was found to be a good source of single cell protein as an ingredient inaquaculture feed formulations. Large amount of mycelial waste (actinomycete biomassO is produced from antibiotic industries and this nutrient rich waste can be effectively used as a protein source in aquaculture feeds.This study reveals the importance of marine actinomycetes as a source of antimicrobial compounds and as a probiotic and single cell protein for aquaculture applications.
Resumo:
This thesis entitled Physicochemical and molecular characterization of bacteriophages ΦSP-1and ΦSP-3, specific for pathogenic Salmonella and evaluation of their potential as biocontrol agent . Salmonella were screened using standard methodologies from various environmental samples including chicken caecum. Salmonella strains, which were previously isolated and stocked in the lab, were also included in this study as host, for screening Salmonella specific lytic phages. The Salmonella strain in this study designated as S49 which helped in phage propagation by acting as host bacteria was identified as Salmonella enterica subsp. enterica by 16S rRNA gene analysis and serotyping . A total of three Salmonella specific phage named as ΦSP-1, ΦSP-2 and ΦSP-3 were isolated from chicken intestine samples via an enrichment protocol employing the double agar overlay method. ΦSP-1 and ΦSP-3 showing consistent lytic nature were selected for further study and were purified by repeated plating after picking of single isolated plaques from the lawns of Salmonella S49 plates. Both the phages produced small, clear plaques indicating their lytic nature. ΦSP-1 and ΦSP-3 were concentrated employing PEG-NaCl precipitation method before further characterization. The focus of present study was to isolate, characterize and verify the efficacy of lytic bacteriophages against the robust pathogen Salmonella, capable of surviving under various hostile conditions. Two phages, ΦSP-1 and ΦSP-3, belonging to two families, Podovoridae and Siphoviridae were isolated.
Resumo:
Emergence of antibiotic resistance among aquaculture pathogens has made it necessary to look into environment friendly, effective and sustainable methods such as probiotic and immunostimulants among others.. In the present study, LAB were isolated from the gut of fish species namely Rastrelliger kanagurta and analyzed for their antibacterial activity against various fish, shrimp and human pathogens. Different LAB species such as Lactobacillus plantarum, L. bulgaricus, L. brevis and L. viridiscens were encountered in the gut of R. kanagurta. Several strains showed good activity against fish, shrimp and human pathogens. LAB from the gut of such marine species may be developed as possible probiont for environment friendly health management of fresh water, estuarine and marine species currently exploited in aquaculture
Resumo:
A study was conducted to determine the incidence of Salmonella enterica serovar Enteritidis and other Salmonella serovars on eggshell, egg contents and on egg-storing trays. A total of 492 eggs and 82 egg-storing trays were examined over a period of 1 year from different retail outlets of a residential area of Coimbatore city, South India. Salmonella contamination was recorded in 38 of 492 (7.7%) eggs out of which 29 was in eggshell (5.9%) and 9 in egg contents (1.8%). Around 7.5% of the egg-storing trays were also found to be contaminated with Salmonella. Serotyping of the Salmonella strains showed that 89.7% of the strains from eggshell, 100% of the strains from egg contents and 71.4% of the strains from egg-storing trays were Salmonella Enteritidis. Other serovarvars encountered were S. Cerro, S. Molade and S. Mbandaka from eggshell and S. Cerro from egg-storing trays. Seasonal variations in the prevalence pattern were identified with, a higher prevalence during monsoon months followed by post-monsoon and premonsoon. Further examination of the Salmonella strains was carried out by testing their antimicrobial sensitivity against 10 commonly used antimicrobials. Results revealed high prevalence of multiple antimicrobial resistance among these strains suggesting possible prior selection by use of antimicrobials in egg production